ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi2 Unicode version

Theorem elpwi2 4187
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1  |-  B  e.  V
elpwi2.2  |-  A  C_  B
Assertion
Ref Expression
elpwi2  |-  A  e. 
~P B

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2  |-  A  C_  B
2 elpwi2.1 . . . 4  |-  B  e.  V
32elexi 2772 . . 3  |-  B  e. 
_V
43elpw2 4186 . 2  |-  ( A  e.  ~P B  <->  A  C_  B
)
51, 4mpbir 146 1  |-  A  e. 
~P B
Colors of variables: wff set class
Syntax hints:    e. wcel 2164    C_ wss 3153   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  canth  5871
  Copyright terms: Public domain W3C validator