ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi2 Unicode version

Theorem elpwi2 4203
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1  |-  B  e.  V
elpwi2.2  |-  A  C_  B
Assertion
Ref Expression
elpwi2  |-  A  e. 
~P B

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2  |-  A  C_  B
2 elpwi2.1 . . . 4  |-  B  e.  V
32elexi 2784 . . 3  |-  B  e. 
_V
43elpw2 4202 . 2  |-  ( A  e.  ~P B  <->  A  C_  B
)
51, 4mpbir 146 1  |-  A  e. 
~P B
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  canth  5899  bitsf  12290  prdsvallem  13137
  Copyright terms: Public domain W3C validator