ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi2 Unicode version

Theorem elpwi2 4242
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1  |-  B  e.  V
elpwi2.2  |-  A  C_  B
Assertion
Ref Expression
elpwi2  |-  A  e. 
~P B

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2  |-  A  C_  B
2 elpwi2.1 . . . 4  |-  B  e.  V
32elexi 2812 . . 3  |-  B  e. 
_V
43elpw2 4241 . 2  |-  ( A  e.  ~P B  <->  A  C_  B
)
51, 4mpbir 146 1  |-  A  e. 
~P B
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  canth  5952  bitsf  12457  prdsvallem  13305
  Copyright terms: Public domain W3C validator