ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi2 Unicode version

Theorem elpwi2 4137
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1  |-  B  e.  V
elpwi2.2  |-  A  C_  B
Assertion
Ref Expression
elpwi2  |-  A  e. 
~P B

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2  |-  A  C_  B
2 elpwi2.1 . . . 4  |-  B  e.  V
32elexi 2738 . . 3  |-  B  e. 
_V
43elpw2 4136 . 2  |-  ( A  e.  ~P B  <->  A  C_  B
)
51, 4mpbir 145 1  |-  A  e. 
~P B
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  canth  5796
  Copyright terms: Public domain W3C validator