Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwi2 | Unicode version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | |
elpwi2.2 |
Ref | Expression |
---|---|
elpwi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 | |
2 | elpwi2.1 | . . . 4 | |
3 | 2 | elexi 2738 | . . 3 |
4 | 3 | elpw2 4136 | . 2 |
5 | 1, 4 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: canth 5796 |
Copyright terms: Public domain | W3C validator |