ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 Unicode version

Theorem elpw2 4169
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1  |-  B  e. 
_V
Assertion
Ref Expression
elpw2  |-  ( A  e.  ~P B  <->  A  C_  B
)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2  |-  B  e. 
_V
2 elpw2g 4168 . 2  |-  ( B  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  ~P B  <->  A  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2158   _Vcvv 2749    C_ wss 3141   ~Pcpw 3587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147  df-ss 3154  df-pw 3589
This theorem is referenced by:  elpwi2  4170  axpweq  4183  genpelxp  7524  ltexprlempr  7621  recexprlempr  7645  cauappcvgprlemcl  7666  cauappcvgprlemladd  7671  caucvgprlemcl  7689  caucvgprprlemcl  7717  uzf  9545  ixxf  9912  fzf  10026  cncfval  14412  reldvg  14501  dvfvalap  14503
  Copyright terms: Public domain W3C validator