| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpw2 | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) | 
| Ref | Expression | 
|---|---|
| elpw2.1 | 
 | 
| Ref | Expression | 
|---|---|
| elpw2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpw2.1 | 
. 2
 | |
| 2 | elpw2g 4189 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: elpwi2 4191 axpweq 4204 genpelxp 7578 ltexprlempr 7675 recexprlempr 7699 cauappcvgprlemcl 7720 cauappcvgprlemladd 7725 caucvgprlemcl 7743 caucvgprprlemcl 7771 uzf 9604 ixxf 9973 fzf 10087 cncfval 14808 reldvg 14915 dvfvalap 14917 plyval 14968 | 
| Copyright terms: Public domain | W3C validator |