ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 Unicode version

Theorem elpw2 4187
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1  |-  B  e. 
_V
Assertion
Ref Expression
elpw2  |-  ( A  e.  ~P B  <->  A  C_  B
)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2  |-  B  e. 
_V
2 elpw2g 4186 . 2  |-  ( B  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  ~P B  <->  A  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4148
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604
This theorem is referenced by:  elpwi2  4188  axpweq  4201  genpelxp  7573  ltexprlempr  7670  recexprlempr  7694  cauappcvgprlemcl  7715  cauappcvgprlemladd  7720  caucvgprlemcl  7738  caucvgprprlemcl  7766  uzf  9598  ixxf  9967  fzf  10081  cncfval  14751  reldvg  14858  dvfvalap  14860  plyval  14911
  Copyright terms: Public domain W3C validator