![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpw2 | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elpw2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elpw2g 4186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 |
This theorem is referenced by: elpwi2 4188 axpweq 4201 genpelxp 7573 ltexprlempr 7670 recexprlempr 7694 cauappcvgprlemcl 7715 cauappcvgprlemladd 7720 caucvgprlemcl 7738 caucvgprprlemcl 7766 uzf 9598 ixxf 9967 fzf 10081 cncfval 14751 reldvg 14858 dvfvalap 14860 plyval 14911 |
Copyright terms: Public domain | W3C validator |