![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpw2 | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elpw2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elpw2g 4168 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-sep 4133 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-in 3147 df-ss 3154 df-pw 3589 |
This theorem is referenced by: elpwi2 4170 axpweq 4183 genpelxp 7524 ltexprlempr 7621 recexprlempr 7645 cauappcvgprlemcl 7666 cauappcvgprlemladd 7671 caucvgprlemcl 7689 caucvgprprlemcl 7717 uzf 9545 ixxf 9912 fzf 10026 cncfval 14412 reldvg 14501 dvfvalap 14503 |
Copyright terms: Public domain | W3C validator |