ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 Unicode version

Theorem elpw2 4159
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1  |-  B  e. 
_V
Assertion
Ref Expression
elpw2  |-  ( A  e.  ~P B  <->  A  C_  B
)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2  |-  B  e. 
_V
2 elpw2g 4158 . 2  |-  ( B  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  ~P B  <->  A  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  elpwi2  4160  axpweq  4173  genpelxp  7512  ltexprlempr  7609  recexprlempr  7633  cauappcvgprlemcl  7654  cauappcvgprlemladd  7659  caucvgprlemcl  7677  caucvgprprlemcl  7705  uzf  9533  ixxf  9900  fzf  10014  cncfval  14144  reldvg  14233  dvfvalap  14235
  Copyright terms: Public domain W3C validator