| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 |
|
| Ref | Expression |
|---|---|
| elexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 |
. 2
| |
| 2 | elex 2783 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elpwi2 4203 onunisuci 4480 ordsoexmid 4611 funopdmsn 5766 1oex 6512 fnoei 6540 oeiexg 6541 endisj 6921 unfiexmid 7017 snexxph 7054 djuex 7147 0ct 7211 nninfex 7225 infnninfOLD 7229 nnnninf 7230 ctssexmid 7254 nninfdcinf 7275 nninfwlporlem 7277 nninfwlpoimlemg 7279 pm54.43 7300 pw1ne3 7344 3nsssucpw1 7350 2omotaplemst 7372 prarloclemarch2 7534 opelreal 7942 elreal 7943 elreal2 7945 eqresr 7951 c0ex 8068 1ex 8069 pnfex 8128 sup3exmid 9032 2ex 9110 3ex 9114 elxr 9900 xnn0nnen 10584 lsw0 11043 setsslid 12916 setsslnid 12917 prdsex 13134 rmodislmod 14146 fnpsr 14462 lgsdir2lem3 15540 funvtxval0d 15663 funvtxvalg 15666 funiedgvalg 15667 struct2slots2dom 15668 structiedg0val 15670 edgstruct 15691 2omapen 15970 subctctexmid 15974 0nninf 15978 nninffeq 15994 |
| Copyright terms: Public domain | W3C validator |