Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elexi | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 |
Ref | Expression |
---|---|
elexi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 | |
2 | elex 2741 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: elpwi2 4142 onunisuci 4415 ordsoexmid 4544 1oex 6400 fnoei 6428 oeiexg 6429 endisj 6798 unfiexmid 6891 snexxph 6923 djuex 7016 0ct 7080 nninfex 7094 infnninfOLD 7097 nnnninf 7098 ctssexmid 7122 pm54.43 7154 pw1ne3 7194 3nsssucpw1 7200 prarloclemarch2 7368 opelreal 7776 elreal 7777 elreal2 7779 eqresr 7785 c0ex 7901 1ex 7902 pnfex 7960 sup3exmid 8860 2ex 8937 3ex 8941 elxr 9720 setsslid 12453 setsslnid 12454 lgsdir2lem3 13684 subctctexmid 13994 0nninf 13997 nninffeq 14013 |
Copyright terms: Public domain | W3C validator |