![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexi | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elexi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elex 2763 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: elpwi2 4176 onunisuci 4450 ordsoexmid 4579 1oex 6449 fnoei 6477 oeiexg 6478 endisj 6850 unfiexmid 6946 snexxph 6979 djuex 7072 0ct 7136 nninfex 7150 infnninfOLD 7153 nnnninf 7154 ctssexmid 7178 nninfdcinf 7199 nninfwlporlem 7201 nninfwlpoimlemg 7203 pm54.43 7219 pw1ne3 7259 3nsssucpw1 7265 2omotaplemst 7287 prarloclemarch2 7448 opelreal 7856 elreal 7857 elreal2 7859 eqresr 7865 c0ex 7981 1ex 7982 pnfex 8041 sup3exmid 8944 2ex 9021 3ex 9025 elxr 9806 setsslid 12563 setsslnid 12564 prdsex 12774 rmodislmod 13667 fnpsr 13945 lgsdir2lem3 14892 subctctexmid 15212 0nninf 15215 nninffeq 15231 |
Copyright terms: Public domain | W3C validator |