| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elexi | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) | 
| Ref | Expression | 
|---|---|
| elisseti.1 | 
 | 
| Ref | Expression | 
|---|---|
| elexi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisseti.1 | 
. 2
 | |
| 2 | elex 2774 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: elpwi2 4191 onunisuci 4467 ordsoexmid 4598 1oex 6482 fnoei 6510 oeiexg 6511 endisj 6883 unfiexmid 6979 snexxph 7016 djuex 7109 0ct 7173 nninfex 7187 infnninfOLD 7191 nnnninf 7192 ctssexmid 7216 nninfdcinf 7237 nninfwlporlem 7239 nninfwlpoimlemg 7241 pm54.43 7257 pw1ne3 7297 3nsssucpw1 7303 2omotaplemst 7325 prarloclemarch2 7486 opelreal 7894 elreal 7895 elreal2 7897 eqresr 7903 c0ex 8020 1ex 8021 pnfex 8080 sup3exmid 8984 2ex 9062 3ex 9066 elxr 9851 xnn0nnen 10529 setsslid 12729 setsslnid 12730 prdsex 12940 rmodislmod 13907 fnpsr 14221 lgsdir2lem3 15271 subctctexmid 15645 0nninf 15648 nninffeq 15664 | 
| Copyright terms: Public domain | W3C validator |