![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexi | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elexi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elex 2771 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elpwi2 4188 onunisuci 4464 ordsoexmid 4595 1oex 6479 fnoei 6507 oeiexg 6508 endisj 6880 unfiexmid 6976 snexxph 7011 djuex 7104 0ct 7168 nninfex 7182 infnninfOLD 7186 nnnninf 7187 ctssexmid 7211 nninfdcinf 7232 nninfwlporlem 7234 nninfwlpoimlemg 7236 pm54.43 7252 pw1ne3 7292 3nsssucpw1 7298 2omotaplemst 7320 prarloclemarch2 7481 opelreal 7889 elreal 7890 elreal2 7892 eqresr 7898 c0ex 8015 1ex 8016 pnfex 8075 sup3exmid 8978 2ex 9056 3ex 9060 elxr 9845 xnn0nnen 10511 setsslid 12672 setsslnid 12673 prdsex 12883 rmodislmod 13850 fnpsr 14164 lgsdir2lem3 15187 subctctexmid 15561 0nninf 15564 nninffeq 15580 |
Copyright terms: Public domain | W3C validator |