| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 |
|
| Ref | Expression |
|---|---|
| elexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 |
. 2
| |
| 2 | elex 2774 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elpwi2 4192 onunisuci 4468 ordsoexmid 4599 1oex 6491 fnoei 6519 oeiexg 6520 endisj 6892 unfiexmid 6988 snexxph 7025 djuex 7118 0ct 7182 nninfex 7196 infnninfOLD 7200 nnnninf 7201 ctssexmid 7225 nninfdcinf 7246 nninfwlporlem 7248 nninfwlpoimlemg 7250 pm54.43 7269 pw1ne3 7313 3nsssucpw1 7319 2omotaplemst 7341 prarloclemarch2 7503 opelreal 7911 elreal 7912 elreal2 7914 eqresr 7920 c0ex 8037 1ex 8038 pnfex 8097 sup3exmid 9001 2ex 9079 3ex 9083 elxr 9868 xnn0nnen 10546 setsslid 12754 setsslnid 12755 prdsex 12971 rmodislmod 13983 fnpsr 14297 lgsdir2lem3 15355 2omapen 15727 subctctexmid 15731 0nninf 15735 nninffeq 15751 |
| Copyright terms: Public domain | W3C validator |