| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elexi | Unicode version | ||
| Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| elisseti.1 |
|
| Ref | Expression |
|---|---|
| elexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisseti.1 |
. 2
| |
| 2 | elex 2811 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elpwi2 4242 onunisuci 4523 ordsoexmid 4654 funopdmsn 5819 1oex 6570 fnoei 6598 oeiexg 6599 endisj 6983 unfiexmid 7080 snexxph 7117 djuex 7210 0ct 7274 nninfex 7288 infnninfOLD 7292 nnnninf 7293 ctssexmid 7317 nninfdcinf 7338 nninfwlporlem 7340 nninfwlpoimlemg 7342 pm54.43 7363 pw1ne3 7415 3nsssucpw1 7421 2omotaplemst 7444 prarloclemarch2 7606 opelreal 8014 elreal 8015 elreal2 8017 eqresr 8023 c0ex 8140 1ex 8141 pnfex 8200 sup3exmid 9104 2ex 9182 3ex 9186 elxr 9972 xnn0nnen 10659 lsw0 11119 setsslid 13083 setsslnid 13084 bassetsnn 13089 prdsex 13302 rmodislmod 14315 fnpsr 14631 lgsdir2lem3 15709 funvtxval0d 15834 funvtxvalg 15837 funiedgvalg 15838 struct2slots2dom 15839 structiedg0val 15841 edgstruct 15864 2omapen 16360 subctctexmid 16366 0nninf 16370 nninffeq 16386 |
| Copyright terms: Public domain | W3C validator |