Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwi2 | GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . . 4 ⊢ 𝐵 ∈ 𝑉 | |
3 | 2 | elexi 2736 | . . 3 ⊢ 𝐵 ∈ V |
4 | 3 | elpw2 4133 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 145 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2135 ⊆ wss 3114 𝒫 cpw 3556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-sep 4097 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-in 3120 df-ss 3127 df-pw 3558 |
This theorem is referenced by: canth 5793 |
Copyright terms: Public domain | W3C validator |