ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi2 GIF version

Theorem elpwi2 4172
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . . 4 𝐵𝑉
32elexi 2763 . . 3 𝐵 ∈ V
43elpw2 4171 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 146 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2159  wss 3143  𝒫 cpw 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170  ax-sep 4135
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-in 3149  df-ss 3156  df-pw 3591
This theorem is referenced by:  canth  5844
  Copyright terms: Public domain W3C validator