ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr Unicode version

Theorem eldju2ndr 7038
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7003 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
21eleq2i 2233 . . . 4  |-  ( X  e.  ( A B )  <-> 
X  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
3 elun 3263 . . . 4  |-  ( X  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  <->  ( X  e.  ( { (/) }  X.  A )  \/  X  e.  ( { 1o }  X.  B ) ) )
42, 3bitri 183 . . 3  |-  ( X  e.  ( A B )  <-> 
( X  e.  ( { (/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) ) )
5 elxp6 6137 . . . . 5  |-  ( X  e.  ( { (/) }  X.  A )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { (/) }  /\  ( 2nd `  X
)  e.  A ) ) )
6 elsni 3594 . . . . . . 7  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( 1st `  X )  =  (/) )
7 eqneqall 2346 . . . . . . 7  |-  ( ( 1st `  X )  =  (/)  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B
) )
86, 7syl 14 . . . . . 6  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
98ad2antrl 482 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
105, 9sylbi 120 . . . 4  |-  ( X  e.  ( { (/) }  X.  A )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
11 elxp6 6137 . . . . 5  |-  ( X  e.  ( { 1o }  X.  B )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { 1o }  /\  ( 2nd `  X
)  e.  B ) ) )
12 simprr 522 . . . . . 6  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( 2nd `  X
)  e.  B )
1312a1d 22 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1411, 13sylbi 120 . . . 4  |-  ( X  e.  ( { 1o }  X.  B )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1510, 14jaoi 706 . . 3  |-  ( ( X  e.  ( {
(/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
164, 15sylbi 120 . 2  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1716imp 123 1  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336    u. cun 3114   (/)c0 3409   {csn 3576   <.cop 3579    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   1oc1o 6377   ⊔ cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109  df-dju 7003
This theorem is referenced by:  updjudhf  7044
  Copyright terms: Public domain W3C validator