ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr Unicode version

Theorem eldju2ndr 7175
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7140 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
21eleq2i 2272 . . . 4  |-  ( X  e.  ( A B )  <-> 
X  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
3 elun 3314 . . . 4  |-  ( X  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  <->  ( X  e.  ( { (/) }  X.  A )  \/  X  e.  ( { 1o }  X.  B ) ) )
42, 3bitri 184 . . 3  |-  ( X  e.  ( A B )  <-> 
( X  e.  ( { (/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) ) )
5 elxp6 6255 . . . . 5  |-  ( X  e.  ( { (/) }  X.  A )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { (/) }  /\  ( 2nd `  X
)  e.  A ) ) )
6 elsni 3651 . . . . . . 7  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( 1st `  X )  =  (/) )
7 eqneqall 2386 . . . . . . 7  |-  ( ( 1st `  X )  =  (/)  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B
) )
86, 7syl 14 . . . . . 6  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
98ad2antrl 490 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
105, 9sylbi 121 . . . 4  |-  ( X  e.  ( { (/) }  X.  A )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
11 elxp6 6255 . . . . 5  |-  ( X  e.  ( { 1o }  X.  B )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { 1o }  /\  ( 2nd `  X
)  e.  B ) ) )
12 simprr 531 . . . . . 6  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( 2nd `  X
)  e.  B )
1312a1d 22 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1411, 13sylbi 121 . . . 4  |-  ( X  e.  ( { 1o }  X.  B )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1510, 14jaoi 718 . . 3  |-  ( ( X  e.  ( {
(/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
164, 15sylbi 121 . 2  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1716imp 124 1  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176    =/= wne 2376    u. cun 3164   (/)c0 3460   {csn 3633   <.cop 3636    X. cxp 4673   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   1oc1o 6495   ⊔ cdju 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226  df-2nd 6227  df-dju 7140
This theorem is referenced by:  updjudhf  7181
  Copyright terms: Public domain W3C validator