ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndr Unicode version

Theorem eldju2ndr 7134
Description: The second component of an element of a disjoint union is an element of the right class of the disjoint union if its first component is not the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndr  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)

Proof of Theorem eldju2ndr
StepHypRef Expression
1 df-dju 7099 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
21eleq2i 2260 . . . 4  |-  ( X  e.  ( A B )  <-> 
X  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
3 elun 3301 . . . 4  |-  ( X  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  <->  ( X  e.  ( { (/) }  X.  A )  \/  X  e.  ( { 1o }  X.  B ) ) )
42, 3bitri 184 . . 3  |-  ( X  e.  ( A B )  <-> 
( X  e.  ( { (/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) ) )
5 elxp6 6224 . . . . 5  |-  ( X  e.  ( { (/) }  X.  A )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { (/) }  /\  ( 2nd `  X
)  e.  A ) ) )
6 elsni 3637 . . . . . . 7  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( 1st `  X )  =  (/) )
7 eqneqall 2374 . . . . . . 7  |-  ( ( 1st `  X )  =  (/)  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B
) )
86, 7syl 14 . . . . . 6  |-  ( ( 1st `  X )  e.  { (/) }  ->  ( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
98ad2antrl 490 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
105, 9sylbi 121 . . . 4  |-  ( X  e.  ( { (/) }  X.  A )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
11 elxp6 6224 . . . . 5  |-  ( X  e.  ( { 1o }  X.  B )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { 1o }  /\  ( 2nd `  X
)  e.  B ) ) )
12 simprr 531 . . . . . 6  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( 2nd `  X
)  e.  B )
1312a1d 22 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1411, 13sylbi 121 . . . 4  |-  ( X  e.  ( { 1o }  X.  B )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1510, 14jaoi 717 . . 3  |-  ( ( X  e.  ( {
(/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) )  -> 
( ( 1st `  X
)  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
164, 15sylbi 121 . 2  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  B ) )
1716imp 124 1  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =/=  (/) )  ->  ( 2nd `  X )  e.  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364    u. cun 3152   (/)c0 3447   {csn 3619   <.cop 3622    X. cxp 4658   ` cfv 5255   1stc1st 6193   2ndc2nd 6194   1oc1o 6464   ⊔ cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-1st 6195  df-2nd 6196  df-dju 7099
This theorem is referenced by:  updjudhf  7140
  Copyright terms: Public domain W3C validator