ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prm23lt5 Unicode version

Theorem prm23lt5 12432
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  =  2  \/  P  =  3 ) )

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 12278 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
21nnnn0d 9302 . . . 4  |-  ( P  e.  Prime  ->  P  e. 
NN0 )
32adantr 276 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  e.  NN0 )
4 4nn0 9268 . . . 4  |-  4  e.  NN0
54a1i 9 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  4  e.  NN0 )
6 df-5 9052 . . . . . 6  |-  5  =  ( 4  +  1 )
76breq2i 4041 . . . . 5  |-  ( P  <  5  <->  P  <  ( 4  +  1 ) )
8 prmz 12279 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9 4z 9356 . . . . . . 7  |-  4  e.  ZZ
10 zleltp1 9381 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  4  e.  ZZ )  ->  ( P  <_  4  <->  P  <  ( 4  +  1 ) ) )
118, 9, 10sylancl 413 . . . . . 6  |-  ( P  e.  Prime  ->  ( P  <_  4  <->  P  <  ( 4  +  1 ) ) )
1211biimprd 158 . . . . 5  |-  ( P  e.  Prime  ->  ( P  <  ( 4  +  1 )  ->  P  <_  4 ) )
137, 12biimtrid 152 . . . 4  |-  ( P  e.  Prime  ->  ( P  <  5  ->  P  <_  4 ) )
1413imp 124 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  <_  4 )
15 elfz2nn0 10187 . . 3  |-  ( P  e.  ( 0 ... 4 )  <->  ( P  e.  NN0  /\  4  e. 
NN0  /\  P  <_  4 ) )
163, 5, 14, 15syl3anbrc 1183 . 2  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  e.  ( 0 ... 4
) )
17 fz0to4untppr 10199 . . . 4  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
1817eleq2i 2263 . . 3  |-  ( P  e.  ( 0 ... 4 )  <->  P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } ) )
19 elun 3304 . . . . . 6  |-  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  <-> 
( P  e.  {
0 ,  1 ,  2 }  \/  P  e.  { 3 ,  4 } ) )
20 eltpi 3669 . . . . . . . 8  |-  ( P  e.  { 0 ,  1 ,  2 }  ->  ( P  =  0  \/  P  =  1  \/  P  =  2 ) )
21 nnne0 9018 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  P  =/=  0 )
22 eqneqall 2377 . . . . . . . . . . . 12  |-  ( P  =  0  ->  ( P  =/=  0  ->  ( P  =  2  \/  P  =  3 ) ) )
2322com12 30 . . . . . . . . . . 11  |-  ( P  =/=  0  ->  ( P  =  0  ->  ( P  =  2  \/  P  =  3 ) ) )
241, 21, 233syl 17 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P  =  0  ->  ( P  =  2  \/  P  =  3 ) ) )
2524com12 30 . . . . . . . . 9  |-  ( P  =  0  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
26 eleq1 2259 . . . . . . . . . 10  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
27 1nprm 12282 . . . . . . . . . . 11  |-  -.  1  e.  Prime
2827pm2.21i 647 . . . . . . . . . 10  |-  ( 1  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) )
2926, 28biimtrdi 163 . . . . . . . . 9  |-  ( P  =  1  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
30 orc 713 . . . . . . . . . 10  |-  ( P  =  2  ->  ( P  =  2  \/  P  =  3 ) )
3130a1d 22 . . . . . . . . 9  |-  ( P  =  2  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
3225, 29, 313jaoi 1314 . . . . . . . 8  |-  ( ( P  =  0  \/  P  =  1  \/  P  =  2 )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
3320, 32syl 14 . . . . . . 7  |-  ( P  e.  { 0 ,  1 ,  2 }  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
34 elpri 3645 . . . . . . . 8  |-  ( P  e.  { 3 ,  4 }  ->  ( P  =  3  \/  P  =  4 ) )
35 olc 712 . . . . . . . . . 10  |-  ( P  =  3  ->  ( P  =  2  \/  P  =  3 ) )
3635a1d 22 . . . . . . . . 9  |-  ( P  =  3  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
37 eleq1 2259 . . . . . . . . . 10  |-  ( P  =  4  ->  ( P  e.  Prime  <->  4  e.  Prime ) )
38 4nprm 12297 . . . . . . . . . . 11  |-  -.  4  e.  Prime
3938pm2.21i 647 . . . . . . . . . 10  |-  ( 4  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) )
4037, 39biimtrdi 163 . . . . . . . . 9  |-  ( P  =  4  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4136, 40jaoi 717 . . . . . . . 8  |-  ( ( P  =  3  \/  P  =  4 )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4234, 41syl 14 . . . . . . 7  |-  ( P  e.  { 3 ,  4 }  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4333, 42jaoi 717 . . . . . 6  |-  ( ( P  e.  { 0 ,  1 ,  2 }  \/  P  e. 
{ 3 ,  4 } )  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4419, 43sylbi 121 . . . . 5  |-  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4544com12 30 . . . 4  |-  ( P  e.  Prime  ->  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  ->  ( P  =  2  \/  P  =  3 ) ) )
4645adantr 276 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  e.  ( {
0 ,  1 ,  2 }  u.  {
3 ,  4 } )  ->  ( P  =  2  \/  P  =  3 ) ) )
4718, 46biimtrid 152 . 2  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  e.  ( 0 ... 4 )  -> 
( P  =  2  \/  P  =  3 ) ) )
4816, 47mpd 13 1  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  =  2  \/  P  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367    u. cun 3155   {cpr 3623   {ctp 3624   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   NNcn 8990   2c2 9041   3c3 9042   4c4 9043   5c5 9044   NN0cn0 9249   ZZcz 9326   ...cfz 10083   Primecprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-prm 12276
This theorem is referenced by:  prm23ge5  12433
  Copyright terms: Public domain W3C validator