ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prm23lt5 Unicode version

Theorem prm23lt5 12459
Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23lt5  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  =  2  \/  P  =  3 ) )

Proof of Theorem prm23lt5
StepHypRef Expression
1 prmnn 12305 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
21nnnn0d 9321 . . . 4  |-  ( P  e.  Prime  ->  P  e. 
NN0 )
32adantr 276 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  e.  NN0 )
4 4nn0 9287 . . . 4  |-  4  e.  NN0
54a1i 9 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  4  e.  NN0 )
6 df-5 9071 . . . . . 6  |-  5  =  ( 4  +  1 )
76breq2i 4042 . . . . 5  |-  ( P  <  5  <->  P  <  ( 4  +  1 ) )
8 prmz 12306 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9 4z 9375 . . . . . . 7  |-  4  e.  ZZ
10 zleltp1 9400 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  4  e.  ZZ )  ->  ( P  <_  4  <->  P  <  ( 4  +  1 ) ) )
118, 9, 10sylancl 413 . . . . . 6  |-  ( P  e.  Prime  ->  ( P  <_  4  <->  P  <  ( 4  +  1 ) ) )
1211biimprd 158 . . . . 5  |-  ( P  e.  Prime  ->  ( P  <  ( 4  +  1 )  ->  P  <_  4 ) )
137, 12biimtrid 152 . . . 4  |-  ( P  e.  Prime  ->  ( P  <  5  ->  P  <_  4 ) )
1413imp 124 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  <_  4 )
15 elfz2nn0 10206 . . 3  |-  ( P  e.  ( 0 ... 4 )  <->  ( P  e.  NN0  /\  4  e. 
NN0  /\  P  <_  4 ) )
163, 5, 14, 15syl3anbrc 1183 . 2  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  P  e.  ( 0 ... 4
) )
17 fz0to4untppr 10218 . . . 4  |-  ( 0 ... 4 )  =  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )
1817eleq2i 2263 . . 3  |-  ( P  e.  ( 0 ... 4 )  <->  P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } ) )
19 elun 3305 . . . . . 6  |-  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  <-> 
( P  e.  {
0 ,  1 ,  2 }  \/  P  e.  { 3 ,  4 } ) )
20 eltpi 3670 . . . . . . . 8  |-  ( P  e.  { 0 ,  1 ,  2 }  ->  ( P  =  0  \/  P  =  1  \/  P  =  2 ) )
21 nnne0 9037 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  P  =/=  0 )
22 eqneqall 2377 . . . . . . . . . . . 12  |-  ( P  =  0  ->  ( P  =/=  0  ->  ( P  =  2  \/  P  =  3 ) ) )
2322com12 30 . . . . . . . . . . 11  |-  ( P  =/=  0  ->  ( P  =  0  ->  ( P  =  2  \/  P  =  3 ) ) )
241, 21, 233syl 17 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P  =  0  ->  ( P  =  2  \/  P  =  3 ) ) )
2524com12 30 . . . . . . . . 9  |-  ( P  =  0  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
26 eleq1 2259 . . . . . . . . . 10  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
27 1nprm 12309 . . . . . . . . . . 11  |-  -.  1  e.  Prime
2827pm2.21i 647 . . . . . . . . . 10  |-  ( 1  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) )
2926, 28biimtrdi 163 . . . . . . . . 9  |-  ( P  =  1  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
30 orc 713 . . . . . . . . . 10  |-  ( P  =  2  ->  ( P  =  2  \/  P  =  3 ) )
3130a1d 22 . . . . . . . . 9  |-  ( P  =  2  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
3225, 29, 313jaoi 1314 . . . . . . . 8  |-  ( ( P  =  0  \/  P  =  1  \/  P  =  2 )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
3320, 32syl 14 . . . . . . 7  |-  ( P  e.  { 0 ,  1 ,  2 }  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
34 elpri 3646 . . . . . . . 8  |-  ( P  e.  { 3 ,  4 }  ->  ( P  =  3  \/  P  =  4 ) )
35 olc 712 . . . . . . . . . 10  |-  ( P  =  3  ->  ( P  =  2  \/  P  =  3 ) )
3635a1d 22 . . . . . . . . 9  |-  ( P  =  3  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
37 eleq1 2259 . . . . . . . . . 10  |-  ( P  =  4  ->  ( P  e.  Prime  <->  4  e.  Prime ) )
38 4nprm 12324 . . . . . . . . . . 11  |-  -.  4  e.  Prime
3938pm2.21i 647 . . . . . . . . . 10  |-  ( 4  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) )
4037, 39biimtrdi 163 . . . . . . . . 9  |-  ( P  =  4  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4136, 40jaoi 717 . . . . . . . 8  |-  ( ( P  =  3  \/  P  =  4 )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4234, 41syl 14 . . . . . . 7  |-  ( P  e.  { 3 ,  4 }  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4333, 42jaoi 717 . . . . . 6  |-  ( ( P  e.  { 0 ,  1 ,  2 }  \/  P  e. 
{ 3 ,  4 } )  ->  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4419, 43sylbi 121 . . . . 5  |-  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  ->  ( P  e. 
Prime  ->  ( P  =  2  \/  P  =  3 ) ) )
4544com12 30 . . . 4  |-  ( P  e.  Prime  ->  ( P  e.  ( { 0 ,  1 ,  2 }  u.  { 3 ,  4 } )  ->  ( P  =  2  \/  P  =  3 ) ) )
4645adantr 276 . . 3  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  e.  ( {
0 ,  1 ,  2 }  u.  {
3 ,  4 } )  ->  ( P  =  2  \/  P  =  3 ) ) )
4718, 46biimtrid 152 . 2  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  e.  ( 0 ... 4 )  -> 
( P  =  2  \/  P  =  3 ) ) )
4816, 47mpd 13 1  |-  ( ( P  e.  Prime  /\  P  <  5 )  ->  ( P  =  2  \/  P  =  3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367    u. cun 3155   {cpr 3624   {ctp 3625   class class class wbr 4034  (class class class)co 5925   0cc0 7898   1c1 7899    + caddc 7901    < clt 8080    <_ cle 8081   NNcn 9009   2c2 9060   3c3 9061   4c4 9062   5c5 9063   NN0cn0 9268   ZZcz 9345   ...cfz 10102   Primecprime 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-prm 12303
This theorem is referenced by:  prm23ge5  12460
  Copyright terms: Public domain W3C validator