ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfzo0difsn Unicode version

Theorem modfzo0difsn 10330
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. i  e.  (
1..^ N ) K  =  ( ( i  +  J )  mod 
N ) )
Distinct variable groups:    i, J    i, K    i, N

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3244 . . . 4  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  ( 0..^ N ) )
2 elfzoelz 10082 . . . 4  |-  ( K  e.  ( 0..^ N )  ->  K  e.  ZZ )
31, 2syl 14 . . 3  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  ZZ )
4 elfzoelz 10082 . . 3  |-  ( J  e.  ( 0..^ N )  ->  J  e.  ZZ )
5 zdcle 9267 . . . 4  |-  ( ( K  e.  ZZ  /\  J  e.  ZZ )  -> DECID  K  <_  J )
6 exmiddc 826 . . . 4  |-  (DECID  K  <_  J  ->  ( K  <_  J  \/  -.  K  <_  J ) )
75, 6syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  J  e.  ZZ )  ->  ( K  <_  J  \/  -.  K  <_  J
) )
83, 4, 7syl2anr 288 . 2  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <_  J  \/  -.  K  <_  J
) )
9 zleloe 9238 . . . . . 6  |-  ( ( K  e.  ZZ  /\  J  e.  ZZ )  ->  ( K  <_  J  <->  ( K  <  J  \/  K  =  J )
) )
103, 4, 9syl2anr 288 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <_  J  <->  ( K  <  J  \/  K  =  J )
) )
11 elfzo0 10117 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0..^ N )  <->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) )
12 elfzo0 10117 . . . . . . . . . . . . . . . 16  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
13 nn0cn 9124 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( K  e.  NN0  ->  K  e.  CC )
1413adantr 274 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  CC )
1514adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  K  e.  CC )
16 nn0cn 9124 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  NN0  ->  J  e.  CC )
17163ad2ant1 1008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  CC )
1817adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  J  e.  CC )
19 nncn 8865 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  N  e.  CC )
20193ad2ant2 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  CC )
2120adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  CC )
2215, 18, 21subadd23d 8231 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  +  N )  =  ( K  +  ( N  -  J ) ) )
23 simpl 108 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  NN0 )
24 nn0z 9211 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  NN0  ->  J  e.  ZZ )
25 nnz 9210 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  N  e.  ZZ )
26 znnsub 9242 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  <  N  <->  ( N  -  J )  e.  NN ) )
2724, 25, 26syl2an 287 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( J  <  N  <->  ( N  -  J )  e.  NN ) )
2827biimp3a 1335 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( N  -  J )  e.  NN )
29 nn0nnaddcl 9145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  ( N  -  J
)  e.  NN )  ->  ( K  +  ( N  -  J
) )  e.  NN )
3023, 28, 29syl2anr 288 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  +  ( N  -  J ) )  e.  NN )
3122, 30eqeltrd 2243 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  +  N )  e.  NN )
3231adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  e.  NN )
33 simp2 988 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  NN )
3433adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  NN )
3534adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  ->  N  e.  NN )
36 nn0re 9123 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( K  e.  NN0  ->  K  e.  RR )
3736adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  RR )
3837adantl 275 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  K  e.  RR )
39 nn0re 9123 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( J  e.  NN0  ->  J  e.  RR )
40393ad2ant1 1008 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  RR )
4140adantr 274 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  J  e.  RR )
4238, 41sublt0d 8468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  <  0  <->  K  <  J ) )
4342bicomd 140 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  <  J  <->  ( K  -  J )  <  0
) )
4443biimpa 294 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( K  -  J
)  <  0 )
45 resubcl 8162 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  RR  /\  J  e.  RR )  ->  ( K  -  J
)  e.  RR )
4637, 40, 45syl2anr 288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( K  -  J )  e.  RR )
47 nnre 8864 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  N  e.  RR )
48473ad2ant2 1009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  N  e.  RR )
4948adantr 274 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  N  e.  RR )
5046, 49jca 304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  /\  ( K  e.  NN0  /\  K  <  N ) )  ->  ( ( K  -  J )  e.  RR  /\  N  e.  RR ) )
5150adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  e.  RR  /\  N  e.  RR ) )
52 ltaddnegr 8323 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  -  J
)  e.  RR  /\  N  e.  RR )  ->  ( ( K  -  J )  <  0  <->  ( ( K  -  J
)  +  N )  <  N ) )
5351, 52syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  <  0  <->  ( ( K  -  J
)  +  N )  <  N ) )
5444, 53mpbid 146 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  <  N )
55 elfzo1 10125 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  -  J
)  +  N )  e.  ( 1..^ N )  <->  ( ( ( K  -  J )  +  N )  e.  NN  /\  N  e.  NN  /\  ( ( K  -  J )  +  N )  < 
N ) )
5632, 35, 54, 55syl3anbrc 1171 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  /\  ( K  e.  NN0  /\  K  < 
N ) )  /\  K  <  J )  -> 
( ( K  -  J )  +  N
)  e.  ( 1..^ N ) )
5756exp31 362 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  (
( K  e.  NN0  /\  K  <  N )  ->  ( K  < 
J  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) ) ) )
5812, 57sylbi 120 . . . . . . . . . . . . . . 15  |-  ( J  e.  ( 0..^ N )  ->  ( ( K  e.  NN0  /\  K  <  N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
5958com12 30 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( J  e.  ( 0..^ N )  -> 
( K  <  J  ->  ( ( K  -  J )  +  N
)  e.  ( 1..^ N ) ) ) )
60593adant2 1006 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
6111, 60sylbi 120 . . . . . . . . . . . 12  |-  ( K  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  < 
J  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) ) ) )
621, 61syl 14 . . . . . . . . . . 11  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  e.  ( 0..^ N )  ->  ( K  <  J  ->  (
( K  -  J
)  +  N )  e.  ( 1..^ N ) ) ) )
6362impcom 124 . . . . . . . . . 10  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <  J  ->  ( ( K  -  J )  +  N
)  e.  ( 1..^ N ) ) )
6463impcom 124 . . . . . . . . 9  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  +  N )  e.  ( 1..^ N ) )
65 oveq1 5849 . . . . . . . . . . . 12  |-  ( i  =  ( ( K  -  J )  +  N )  ->  (
i  +  J )  =  ( ( ( K  -  J )  +  N )  +  J ) )
662zcnd 9314 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( K  e.  ( 0..^ N )  ->  K  e.  CC )
6766adantr 274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  K  e.  CC )
6816adantr 274 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  J  e.  CC )
6968adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  J  e.  CC )
7019adantl 275 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  N  e.  CC )
7170adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  ->  N  e.  CC )
7267, 69, 713jca 1167 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ( 0..^ N )  /\  ( J  e.  NN0  /\  N  e.  NN ) )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
)
7372ex 114 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 0..^ N )  ->  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
741, 73syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  (
( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
7574com12 30 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  NN0  /\  N  e.  NN )  ->  ( K  e.  ( ( 0..^ N ) 
\  { J }
)  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
76753adant3 1007 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( K  e.  ( (
0..^ N )  \  { J } )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
) )
7712, 76sylbi 120 . . . . . . . . . . . . . . 15  |-  ( J  e.  ( 0..^ N )  ->  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) ) )
7877imp 123 . . . . . . . . . . . . . 14  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )
)
7978adantl 275 . . . . . . . . . . . . 13  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC ) )
80 nppcan 8120 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  J  e.  CC  /\  N  e.  CC )  ->  (
( ( K  -  J )  +  N
)  +  J )  =  ( K  +  N ) )
8179, 80syl 14 . . . . . . . . . . . 12  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( (
( K  -  J
)  +  N )  +  J )  =  ( K  +  N
) )
8265, 81sylan9eqr 2221 . . . . . . . . . . 11  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  (
i  +  J )  =  ( K  +  N ) )
8382oveq1d 5857 . . . . . . . . . 10  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  (
( i  +  J
)  mod  N )  =  ( ( K  +  N )  mod 
N ) )
8483eqeq2d 2177 . . . . . . . . 9  |-  ( ( ( K  <  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  /\  i  =  ( ( K  -  J )  +  N
) )  ->  ( K  =  ( (
i  +  J )  mod  N )  <->  K  =  ( ( K  +  N )  mod  N
) ) )
8511biimpi 119 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 0..^ N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
8685a1d 22 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0..^ N )  ->  ( J  e.  ( 0..^ N )  ->  ( K  e. 
NN0  /\  N  e.  NN  /\  K  <  N
) ) )
871, 86syl 14 . . . . . . . . . . . 12  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  e.  ( 0..^ N )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) ) )
8887impcom 124 . . . . . . . . . . 11  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  e.  NN0  /\  N  e.  NN  /\  K  <  N ) )
8988adantl 275 . . . . . . . . . 10  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  e.  NN0  /\  N  e.  NN  /\  K  < 
N ) )
90 addmodidr 10308 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( K  +  N
)  mod  N )  =  K )
9190eqcomd 2171 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  K  =  ( ( K  +  N )  mod 
N ) )
9289, 91syl 14 . . . . . . . . 9  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  K  =  ( ( K  +  N )  mod  N
) )
9364, 84, 92rspcedvd 2836 . . . . . . . 8  |-  ( ( K  <  J  /\  ( J  e.  (
0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
9493ex 114 . . . . . . 7  |-  ( K  <  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
95 eldifsn 3703 . . . . . . . . . 10  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  <->  ( K  e.  ( 0..^ N )  /\  K  =/=  J
) )
96 eqneqall 2346 . . . . . . . . . . . 12  |-  ( K  =  J  ->  ( K  =/=  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
9796com12 30 . . . . . . . . . . 11  |-  ( K  =/=  J  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
9897adantl 275 . . . . . . . . . 10  |-  ( ( K  e.  ( 0..^ N )  /\  K  =/=  J )  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
9995, 98sylbi 120 . . . . . . . . 9  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N
) ) )
10099adantl 275 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  =  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
101100com12 30 . . . . . . 7  |-  ( K  =  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
10294, 101jaoi 706 . . . . . 6  |-  ( ( K  <  J  \/  K  =  J )  ->  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
103102com12 30 . . . . 5  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( ( K  < 
J  \/  K  =  J )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) ) )
10410, 103sylbid 149 . . . 4  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  <_  J  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
105104com12 30 . . 3  |-  ( K  <_  J  ->  (
( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
106 zltnle 9237 . . . . . . . . . 10  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <  K  <->  -.  K  <_  J )
)
1074, 3, 106syl2an 287 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( J  <  K  <->  -.  K  <_  J )
)
108107bicomd 140 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( -.  K  <_  J 
<->  J  <  K ) )
109243ad2ant1 1008 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  J  e.  ZZ )
110 nn0z 9211 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  NN0  ->  K  e.  ZZ )
111110adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  NN0  /\  K  <  N )  ->  K  e.  ZZ )
112 znnsub 9242 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <  K  <->  ( K  -  J )  e.  NN ) )
113109, 111, 112syl2anr 288 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( J  <  K  <->  ( K  -  J )  e.  NN ) )
114113biimpa 294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( K  -  J
)  e.  NN )
11533adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  N  e.  NN )
116115adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  ->  N  e.  NN )
117 nn0ge0 9139 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  NN0  ->  0  <_  J )
1181173ad2ant1 1008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  0  <_  J )
119118adantl 275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  0  <_  J
)
120 subge02 8376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  RR  /\  J  e.  RR )  ->  ( 0  <_  J  <->  ( K  -  J )  <_  K ) )
12136, 40, 120syl2an 287 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( 0  <_  J 
<->  ( K  -  J
)  <_  K )
)
122119, 121mpbid 146 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( K  -  J )  <_  K
)
12340adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  J  e.  RR )
12436adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  K  e.  RR )
12548adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  N  e.  RR )
126123, 124, 1253jca 1167 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
12745ancoms 266 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( J  e.  RR  /\  K  e.  RR )  ->  ( K  -  J
)  e.  RR )
1281273adant3 1007 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  ( K  -  J )  e.  RR )
129 simp2 988 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  K  e.  RR )
130 simp3 989 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  N  e.  RR )
131128, 129, 1303jca 1167 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( K  -  J
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
132126, 131syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( ( K  -  J )  e.  RR  /\  K  e.  RR  /\  N  e.  RR ) )
133 lelttr 7987 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  -  J
)  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( ( K  -  J )  <_  K  /\  K  <  N )  ->  ( K  -  J )  <  N
) )
134132, 133syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( ( ( K  -  J )  <_  K  /\  K  <  N )  ->  ( K  -  J )  <  N ) )
135122, 134mpand 426 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  NN0  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N ) )  ->  ( K  < 
N  ->  ( K  -  J )  <  N
) )
136135impancom 258 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( K  -  J )  <  N
) )
137136imp 123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  K  <  N )  /\  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )  ->  ( K  -  J )  <  N )
138137adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( K  -  J
)  <  N )
139114, 116, 1383jca 1167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e. 
NN0  /\  K  <  N )  /\  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )  /\  J  <  K )  -> 
( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
)
140139exp31 362 . . . . . . . . . . . . . 14  |-  ( ( K  e.  NN0  /\  K  <  N )  -> 
( ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
)  ->  ( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) ) ) )
1411403adant2 1006 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  N  e.  NN  /\  K  <  N )  ->  (
( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
14211, 141sylbi 120 . . . . . . . . . . . 12  |-  ( K  e.  ( 0..^ N )  ->  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N )  ->  ( J  <  K  ->  (
( K  -  J
)  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  <  N ) ) ) )
1431, 142syl 14 . . . . . . . . . . 11  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  (
( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
144143com12 30 . . . . . . . . . 10  |-  ( ( J  e.  NN0  /\  N  e.  NN  /\  J  <  N )  ->  ( K  e.  ( (
0..^ N )  \  { J } )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) ) )
14512, 144sylbi 120 . . . . . . . . 9  |-  ( J  e.  ( 0..^ N )  ->  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( J  <  K  ->  (
( K  -  J
)  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  <  N ) ) ) )
146145imp 123 . . . . . . . 8  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( J  <  K  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J
)  <  N )
) )
147108, 146sylbid 149 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( -.  K  <_  J  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) ) )
148147impcom 124 . . . . . 6  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) )
149 elfzo1 10125 . . . . . 6  |-  ( ( K  -  J )  e.  ( 1..^ N )  <->  ( ( K  -  J )  e.  NN  /\  N  e.  NN  /\  ( K  -  J )  < 
N ) )
150148, 149sylibr 133 . . . . 5  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  -  J )  e.  ( 1..^ N ) )
151 oveq1 5849 . . . . . . . 8  |-  ( i  =  ( K  -  J )  ->  (
i  +  J )  =  ( ( K  -  J )  +  J ) )
1521, 66syl 14 . . . . . . . . . 10  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  K  e.  CC )
1534zcnd 9314 . . . . . . . . . 10  |-  ( J  e.  ( 0..^ N )  ->  J  e.  CC )
154 npcan 8107 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  J  e.  CC )  ->  ( ( K  -  J )  +  J
)  =  K )
155152, 153, 154syl2anr 288 . . . . . . . . 9  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( ( K  -  J )  +  J
)  =  K )
156155adantl 275 . . . . . . . 8  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( ( K  -  J )  +  J )  =  K )
157151, 156sylan9eqr 2221 . . . . . . 7  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( i  +  J
)  =  K )
158157oveq1d 5857 . . . . . 6  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( ( i  +  J )  mod  N
)  =  ( K  mod  N ) )
159158eqeq2d 2177 . . . . 5  |-  ( ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N ) 
\  { J }
) ) )  /\  i  =  ( K  -  J ) )  -> 
( K  =  ( ( i  +  J
)  mod  N )  <->  K  =  ( K  mod  N ) ) )
160 zmodidfzoimp 10289 . . . . . . . . 9  |-  ( K  e.  ( 0..^ N )  ->  ( K  mod  N )  =  K )
1611, 160syl 14 . . . . . . . 8  |-  ( K  e.  ( ( 0..^ N )  \  { J } )  ->  ( K  mod  N )  =  K )
162161adantl 275 . . . . . . 7  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  -> 
( K  mod  N
)  =  K )
163162adantl 275 . . . . . 6  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  ( K  mod  N )  =  K )
164163eqcomd 2171 . . . . 5  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  K  =  ( K  mod  N ) )
165150, 159, 164rspcedvd 2836 . . . 4  |-  ( ( -.  K  <_  J  /\  ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod  N ) )
166165ex 114 . . 3  |-  ( -.  K  <_  J  ->  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( (
0..^ N )  \  { J } ) )  ->  E. i  e.  ( 1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
167105, 166jaoi 706 . 2  |-  ( ( K  <_  J  \/  -.  K  <_  J )  ->  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. i  e.  (
1..^ N ) K  =  ( ( i  +  J )  mod 
N ) ) )
1688, 167mpcom 36 1  |-  ( ( J  e.  ( 0..^ N )  /\  K  e.  ( ( 0..^ N )  \  { J } ) )  ->  E. i  e.  (
1..^ N ) K  =  ( ( i  +  J )  mod 
N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   E.wrex 2445    \ cdif 3113   {csn 3576   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   NNcn 8857   NN0cn0 9114   ZZcz 9191  ..^cfzo 10077    mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator