ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndl Unicode version

Theorem eldju2ndl 7073
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndl  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =  (/) )  ->  ( 2nd `  X )  e.  A
)

Proof of Theorem eldju2ndl
StepHypRef Expression
1 df-dju 7039 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
21eleq2i 2244 . . . 4  |-  ( X  e.  ( A B )  <-> 
X  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
3 elun 3278 . . . 4  |-  ( X  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  <->  ( X  e.  ( { (/) }  X.  A )  \/  X  e.  ( { 1o }  X.  B ) ) )
42, 3bitri 184 . . 3  |-  ( X  e.  ( A B )  <-> 
( X  e.  ( { (/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) ) )
5 elxp6 6172 . . . . 5  |-  ( X  e.  ( { (/) }  X.  A )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { (/) }  /\  ( 2nd `  X
)  e.  A ) ) )
6 simprr 531 . . . . . 6  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( 2nd `  X
)  e.  A )
76a1d 22 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
85, 7sylbi 121 . . . 4  |-  ( X  e.  ( { (/) }  X.  A )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
9 elxp6 6172 . . . . 5  |-  ( X  e.  ( { 1o }  X.  B )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { 1o }  /\  ( 2nd `  X
)  e.  B ) ) )
10 elsni 3612 . . . . . . 7  |-  ( ( 1st `  X )  e.  { 1o }  ->  ( 1st `  X
)  =  1o )
11 1n0 6435 . . . . . . . 8  |-  1o  =/=  (/)
12 neeq1 2360 . . . . . . . 8  |-  ( ( 1st `  X )  =  1o  ->  (
( 1st `  X
)  =/=  (/)  <->  1o  =/=  (/) ) )
1311, 12mpbiri 168 . . . . . . 7  |-  ( ( 1st `  X )  =  1o  ->  ( 1st `  X )  =/=  (/) )
14 eqneqall 2357 . . . . . . . 8  |-  ( ( 1st `  X )  =  (/)  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  A
) )
1514com12 30 . . . . . . 7  |-  ( ( 1st `  X )  =/=  (/)  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
1610, 13, 153syl 17 . . . . . 6  |-  ( ( 1st `  X )  e.  { 1o }  ->  ( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
1716ad2antrl 490 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
189, 17sylbi 121 . . . 4  |-  ( X  e.  ( { 1o }  X.  B )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
198, 18jaoi 716 . . 3  |-  ( ( X  e.  ( {
(/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
204, 19sylbi 121 . 2  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
2120imp 124 1  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =  (/) )  ->  ( 2nd `  X )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148    =/= wne 2347    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597    X. cxp 4626   ` cfv 5218   1stc1st 6141   2ndc2nd 6142   1oc1o 6412   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-dju 7039
This theorem is referenced by:  updjudhf  7080  subctctexmid  14835
  Copyright terms: Public domain W3C validator