ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju2ndl Unicode version

Theorem eldju2ndl 7049
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.)
Assertion
Ref Expression
eldju2ndl  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =  (/) )  ->  ( 2nd `  X )  e.  A
)

Proof of Theorem eldju2ndl
StepHypRef Expression
1 df-dju 7015 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
21eleq2i 2237 . . . 4  |-  ( X  e.  ( A B )  <-> 
X  e.  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  B
) ) )
3 elun 3268 . . . 4  |-  ( X  e.  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  B
) )  <->  ( X  e.  ( { (/) }  X.  A )  \/  X  e.  ( { 1o }  X.  B ) ) )
42, 3bitri 183 . . 3  |-  ( X  e.  ( A B )  <-> 
( X  e.  ( { (/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) ) )
5 elxp6 6148 . . . . 5  |-  ( X  e.  ( { (/) }  X.  A )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { (/) }  /\  ( 2nd `  X
)  e.  A ) ) )
6 simprr 527 . . . . . 6  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( 2nd `  X
)  e.  A )
76a1d 22 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ (/) }  /\  ( 2nd `  X )  e.  A ) )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
85, 7sylbi 120 . . . 4  |-  ( X  e.  ( { (/) }  X.  A )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
9 elxp6 6148 . . . . 5  |-  ( X  e.  ( { 1o }  X.  B )  <->  ( X  =  <. ( 1st `  X
) ,  ( 2nd `  X ) >.  /\  (
( 1st `  X
)  e.  { 1o }  /\  ( 2nd `  X
)  e.  B ) ) )
10 elsni 3601 . . . . . . 7  |-  ( ( 1st `  X )  e.  { 1o }  ->  ( 1st `  X
)  =  1o )
11 1n0 6411 . . . . . . . 8  |-  1o  =/=  (/)
12 neeq1 2353 . . . . . . . 8  |-  ( ( 1st `  X )  =  1o  ->  (
( 1st `  X
)  =/=  (/)  <->  1o  =/=  (/) ) )
1311, 12mpbiri 167 . . . . . . 7  |-  ( ( 1st `  X )  =  1o  ->  ( 1st `  X )  =/=  (/) )
14 eqneqall 2350 . . . . . . . 8  |-  ( ( 1st `  X )  =  (/)  ->  ( ( 1st `  X )  =/=  (/)  ->  ( 2nd `  X )  e.  A
) )
1514com12 30 . . . . . . 7  |-  ( ( 1st `  X )  =/=  (/)  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
1610, 13, 153syl 17 . . . . . 6  |-  ( ( 1st `  X )  e.  { 1o }  ->  ( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
1716ad2antrl 487 . . . . 5  |-  ( ( X  =  <. ( 1st `  X ) ,  ( 2nd `  X
) >.  /\  ( ( 1st `  X )  e. 
{ 1o }  /\  ( 2nd `  X )  e.  B ) )  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
189, 17sylbi 120 . . . 4  |-  ( X  e.  ( { 1o }  X.  B )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
198, 18jaoi 711 . . 3  |-  ( ( X  e.  ( {
(/) }  X.  A
)  \/  X  e.  ( { 1o }  X.  B ) )  -> 
( ( 1st `  X
)  =  (/)  ->  ( 2nd `  X )  e.  A ) )
204, 19sylbi 120 . 2  |-  ( X  e.  ( A B )  ->  ( ( 1st `  X )  =  (/)  ->  ( 2nd `  X
)  e.  A ) )
2120imp 123 1  |-  ( ( X  e.  ( A B )  /\  ( 1st `  X )  =  (/) )  ->  ( 2nd `  X )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340    u. cun 3119   (/)c0 3414   {csn 3583   <.cop 3586    X. cxp 4609   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   1oc1o 6388   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015
This theorem is referenced by:  updjudhf  7056  subctctexmid  14034
  Copyright terms: Public domain W3C validator