Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldju2ndl | Unicode version |
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju2ndl | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 6972 | . . . . 5 ⊔ | |
2 | 1 | eleq2i 2224 | . . . 4 ⊔ |
3 | elun 3248 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 ⊔ |
5 | elxp6 6111 | . . . . 5 | |
6 | simprr 522 | . . . . . 6 | |
7 | 6 | a1d 22 | . . . . 5 |
8 | 5, 7 | sylbi 120 | . . . 4 |
9 | elxp6 6111 | . . . . 5 | |
10 | elsni 3578 | . . . . . . 7 | |
11 | 1n0 6373 | . . . . . . . 8 | |
12 | neeq1 2340 | . . . . . . . 8 | |
13 | 11, 12 | mpbiri 167 | . . . . . . 7 |
14 | eqneqall 2337 | . . . . . . . 8 | |
15 | 14 | com12 30 | . . . . . . 7 |
16 | 10, 13, 15 | 3syl 17 | . . . . . 6 |
17 | 16 | ad2antrl 482 | . . . . 5 |
18 | 9, 17 | sylbi 120 | . . . 4 |
19 | 8, 18 | jaoi 706 | . . 3 |
20 | 4, 19 | sylbi 120 | . 2 ⊔ |
21 | 20 | imp 123 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1335 wcel 2128 wne 2327 cun 3100 c0 3394 csn 3560 cop 3563 cxp 4581 cfv 5167 c1st 6080 c2nd 6081 c1o 6350 ⊔ cdju 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-dju 6972 |
This theorem is referenced by: updjudhf 7013 subctctexmid 13534 |
Copyright terms: Public domain | W3C validator |