| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldju2ndl | Unicode version | ||
| Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| eldju2ndl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju 7104 |
. . . . 5
| |
| 2 | 1 | eleq2i 2263 |
. . . 4
|
| 3 | elun 3304 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | elxp6 6227 |
. . . . 5
| |
| 6 | simprr 531 |
. . . . . 6
| |
| 7 | 6 | a1d 22 |
. . . . 5
|
| 8 | 5, 7 | sylbi 121 |
. . . 4
|
| 9 | elxp6 6227 |
. . . . 5
| |
| 10 | elsni 3640 |
. . . . . . 7
| |
| 11 | 1n0 6490 |
. . . . . . . 8
| |
| 12 | neeq1 2380 |
. . . . . . . 8
| |
| 13 | 11, 12 | mpbiri 168 |
. . . . . . 7
|
| 14 | eqneqall 2377 |
. . . . . . . 8
| |
| 15 | 14 | com12 30 |
. . . . . . 7
|
| 16 | 10, 13, 15 | 3syl 17 |
. . . . . 6
|
| 17 | 16 | ad2antrl 490 |
. . . . 5
|
| 18 | 9, 17 | sylbi 121 |
. . . 4
|
| 19 | 8, 18 | jaoi 717 |
. . 3
|
| 20 | 4, 19 | sylbi 121 |
. 2
|
| 21 | 20 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 |
| This theorem is referenced by: updjudhf 7145 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |