Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldju2ndl | Unicode version |
Description: The second component of an element of a disjoint union is an element of the left class of the disjoint union if its first component is the empty set. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
eldju2ndl | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 7003 | . . . . 5 ⊔ | |
2 | 1 | eleq2i 2233 | . . . 4 ⊔ |
3 | elun 3263 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 ⊔ |
5 | elxp6 6137 | . . . . 5 | |
6 | simprr 522 | . . . . . 6 | |
7 | 6 | a1d 22 | . . . . 5 |
8 | 5, 7 | sylbi 120 | . . . 4 |
9 | elxp6 6137 | . . . . 5 | |
10 | elsni 3594 | . . . . . . 7 | |
11 | 1n0 6400 | . . . . . . . 8 | |
12 | neeq1 2349 | . . . . . . . 8 | |
13 | 11, 12 | mpbiri 167 | . . . . . . 7 |
14 | eqneqall 2346 | . . . . . . . 8 | |
15 | 14 | com12 30 | . . . . . . 7 |
16 | 10, 13, 15 | 3syl 17 | . . . . . 6 |
17 | 16 | ad2antrl 482 | . . . . 5 |
18 | 9, 17 | sylbi 120 | . . . 4 |
19 | 8, 18 | jaoi 706 | . . 3 |
20 | 4, 19 | sylbi 120 | . 2 ⊔ |
21 | 20 | imp 123 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wne 2336 cun 3114 c0 3409 csn 3576 cop 3579 cxp 4602 cfv 5188 c1st 6106 c2nd 6107 c1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 |
This theorem is referenced by: updjudhf 7044 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |