ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno Unicode version

Theorem nno 10999
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9060 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2 nnnn0 8650 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 nn0o1gt2 10998 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
42, 3sylan 277 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
5 eqneqall 2265 . . . . . . 7  |-  ( N  =  1  ->  ( N  =/=  1  ->  (
( N  -  1 )  /  2 )  e.  NN ) )
65a1d 22 . . . . . 6  |-  ( N  =  1  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
7 nn0z 8740 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
8 peano2zm 8758 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  -  1 )  e.  ZZ )
109ad2antlr 473 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  ZZ )
11 2cn 8464 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1211mulid2i 7470 . . . . . . . . . . . . . 14  |-  ( 1  x.  2 )  =  2
13 nnre 8401 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
1413ltp1d 8363 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
1514adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  ->  N  <  ( N  + 
1 ) )
16 2re 8463 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
1716a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
18 peano2nn 8406 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
1918nnred 8407 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
20 lttr 7538 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  ( N  +  1 )  e.  RR )  -> 
( ( 2  < 
N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2117, 13, 19, 20syl3anc 1174 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( 2  <  N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2221expdimp 255 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  <  ( N  +  1 )  ->  2  <  ( N  +  1 ) ) )
2315, 22mpd 13 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
2  <  ( N  +  1 ) )
2412, 23syl5eqbr 3870 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  x.  2 )  <  ( N  +  1 ) )
25 1red 7482 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  e.  RR )
2619adantr 270 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  +  1 )  e.  RR )
27 2pos 8484 . . . . . . . . . . . . . . . 16  |-  0  <  2
2816, 27pm3.2i 266 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 2  e.  RR  /\  0  <  2 ) )
30 ltmuldiv 8307 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( N  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
1  x.  2 )  <  ( N  + 
1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3125, 26, 29, 30syl3anc 1174 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( 1  x.  2 )  <  ( N  +  1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3224, 31mpbid 145 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  <  ( ( N  +  1 )  /  2 ) )
3319rehalfcld 8632 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  RR )
3433adantr 270 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( N  + 
1 )  /  2
)  e.  RR )
3525, 34posdifd 7985 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  <  (
( N  +  1 )  /  2 )  <->  0  <  ( ( ( N  +  1 )  /  2 )  -  1 ) ) )
3632, 35mpbid 145 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
0  <  ( (
( N  +  1 )  /  2 )  -  1 ) )
3736adantlr 461 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  0  <  (
( ( N  + 
1 )  /  2
)  -  1 ) )
38 elnnz 8730 . . . . . . . . . 10  |-  ( ( ( ( N  + 
1 )  /  2
)  -  1 )  e.  NN  <->  ( (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ  /\  0  <  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
3910, 37, 38sylanbrc 408 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN )
40 nncn 8402 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
41 xp1d2m1eqxm1d2 8638 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4240, 41syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4342eleq1d 2156 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  / 
2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4443adantr 270 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4544adantr 270 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( ( N  +  1 )  /  2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  / 
2 )  e.  NN ) )
4639, 45mpbid 145 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( N  -  1 )  / 
2 )  e.  NN )
4746a1d 22 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( N  =/=  1  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4847expcom 114 . . . . . 6  |-  ( 2  <  N  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
496, 48jaoi 671 . . . . 5  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
504, 49mpcom 36 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
5150impancom 256 . . 3  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
521, 51sylbi 119 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
5352imp 122 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438    =/= wne 2255   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    < clt 7501    - cmin 7632    / cdiv 8113   NNcn 8394   2c2 8444   NN0cn0 8643   ZZcz 8720   ZZ>=cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  nn0o  11000
  Copyright terms: Public domain W3C validator