Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nno | Unicode version |
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nno |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b3 9542 | . . 3 | |
2 | nnnn0 9121 | . . . . . 6 | |
3 | nn0o1gt2 11842 | . . . . . 6 | |
4 | 2, 3 | sylan 281 | . . . . 5 |
5 | eqneqall 2346 | . . . . . . 7 | |
6 | 5 | a1d 22 | . . . . . 6 |
7 | nn0z 9211 | . . . . . . . . . . . 12 | |
8 | peano2zm 9229 | . . . . . . . . . . . 12 | |
9 | 7, 8 | syl 14 | . . . . . . . . . . 11 |
10 | 9 | ad2antlr 481 | . . . . . . . . . 10 |
11 | 2cn 8928 | . . . . . . . . . . . . . . 15 | |
12 | 11 | mulid2i 7902 | . . . . . . . . . . . . . 14 |
13 | nnre 8864 | . . . . . . . . . . . . . . . . 17 | |
14 | 13 | ltp1d 8825 | . . . . . . . . . . . . . . . 16 |
15 | 14 | adantr 274 | . . . . . . . . . . . . . . 15 |
16 | 2re 8927 | . . . . . . . . . . . . . . . . . 18 | |
17 | 16 | a1i 9 | . . . . . . . . . . . . . . . . 17 |
18 | peano2nn 8869 | . . . . . . . . . . . . . . . . . 18 | |
19 | 18 | nnred 8870 | . . . . . . . . . . . . . . . . 17 |
20 | lttr 7972 | . . . . . . . . . . . . . . . . 17 | |
21 | 17, 13, 19, 20 | syl3anc 1228 | . . . . . . . . . . . . . . . 16 |
22 | 21 | expdimp 257 | . . . . . . . . . . . . . . 15 |
23 | 15, 22 | mpd 13 | . . . . . . . . . . . . . 14 |
24 | 12, 23 | eqbrtrid 4017 | . . . . . . . . . . . . 13 |
25 | 1red 7914 | . . . . . . . . . . . . . 14 | |
26 | 19 | adantr 274 | . . . . . . . . . . . . . 14 |
27 | 2pos 8948 | . . . . . . . . . . . . . . . 16 | |
28 | 16, 27 | pm3.2i 270 | . . . . . . . . . . . . . . 15 |
29 | 28 | a1i 9 | . . . . . . . . . . . . . 14 |
30 | ltmuldiv 8769 | . . . . . . . . . . . . . 14 | |
31 | 25, 26, 29, 30 | syl3anc 1228 | . . . . . . . . . . . . 13 |
32 | 24, 31 | mpbid 146 | . . . . . . . . . . . 12 |
33 | 19 | rehalfcld 9103 | . . . . . . . . . . . . . 14 |
34 | 33 | adantr 274 | . . . . . . . . . . . . 13 |
35 | 25, 34 | posdifd 8430 | . . . . . . . . . . . 12 |
36 | 32, 35 | mpbid 146 | . . . . . . . . . . 11 |
37 | 36 | adantlr 469 | . . . . . . . . . 10 |
38 | elnnz 9201 | . . . . . . . . . 10 | |
39 | 10, 37, 38 | sylanbrc 414 | . . . . . . . . 9 |
40 | nncn 8865 | . . . . . . . . . . . . 13 | |
41 | xp1d2m1eqxm1d2 9109 | . . . . . . . . . . . . 13 | |
42 | 40, 41 | syl 14 | . . . . . . . . . . . 12 |
43 | 42 | eleq1d 2235 | . . . . . . . . . . 11 |
44 | 43 | adantr 274 | . . . . . . . . . 10 |
45 | 44 | adantr 274 | . . . . . . . . 9 |
46 | 39, 45 | mpbid 146 | . . . . . . . 8 |
47 | 46 | a1d 22 | . . . . . . 7 |
48 | 47 | expcom 115 | . . . . . 6 |
49 | 6, 48 | jaoi 706 | . . . . 5 |
50 | 4, 49 | mpcom 36 | . . . 4 |
51 | 50 | impancom 258 | . . 3 |
52 | 1, 51 | sylbi 120 | . 2 |
53 | 52 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cmin 8069 cdiv 8568 cn 8857 c2 8908 cn0 9114 cz 9191 cuz 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: nn0o 11844 |
Copyright terms: Public domain | W3C validator |