| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nno | Unicode version | ||
| Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| nno |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 9695 |
. . 3
| |
| 2 | nnnn0 9273 |
. . . . . 6
| |
| 3 | nn0o1gt2 12087 |
. . . . . 6
| |
| 4 | 2, 3 | sylan 283 |
. . . . 5
|
| 5 | eqneqall 2377 |
. . . . . . 7
| |
| 6 | 5 | a1d 22 |
. . . . . 6
|
| 7 | nn0z 9363 |
. . . . . . . . . . . 12
| |
| 8 | peano2zm 9381 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . . . 11
|
| 10 | 9 | ad2antlr 489 |
. . . . . . . . . 10
|
| 11 | 2cn 9078 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | mullidi 8046 |
. . . . . . . . . . . . . 14
|
| 13 | nnre 9014 |
. . . . . . . . . . . . . . . . 17
| |
| 14 | 13 | ltp1d 8974 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 16 | 2re 9077 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | 16 | a1i 9 |
. . . . . . . . . . . . . . . . 17
|
| 18 | peano2nn 9019 |
. . . . . . . . . . . . . . . . . 18
| |
| 19 | 18 | nnred 9020 |
. . . . . . . . . . . . . . . . 17
|
| 20 | lttr 8117 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 17, 13, 19, 20 | syl3anc 1249 |
. . . . . . . . . . . . . . . 16
|
| 22 | 21 | expdimp 259 |
. . . . . . . . . . . . . . 15
|
| 23 | 15, 22 | mpd 13 |
. . . . . . . . . . . . . 14
|
| 24 | 12, 23 | eqbrtrid 4069 |
. . . . . . . . . . . . 13
|
| 25 | 1red 8058 |
. . . . . . . . . . . . . 14
| |
| 26 | 19 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 27 | 2pos 9098 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 16, 27 | pm3.2i 272 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 30 | ltmuldiv 8918 |
. . . . . . . . . . . . . 14
| |
| 31 | 25, 26, 29, 30 | syl3anc 1249 |
. . . . . . . . . . . . 13
|
| 32 | 24, 31 | mpbid 147 |
. . . . . . . . . . . 12
|
| 33 | 19 | rehalfcld 9255 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | adantr 276 |
. . . . . . . . . . . . 13
|
| 35 | 25, 34 | posdifd 8576 |
. . . . . . . . . . . 12
|
| 36 | 32, 35 | mpbid 147 |
. . . . . . . . . . 11
|
| 37 | 36 | adantlr 477 |
. . . . . . . . . 10
|
| 38 | elnnz 9353 |
. . . . . . . . . 10
| |
| 39 | 10, 37, 38 | sylanbrc 417 |
. . . . . . . . 9
|
| 40 | nncn 9015 |
. . . . . . . . . . . . 13
| |
| 41 | xp1d2m1eqxm1d2 9261 |
. . . . . . . . . . . . 13
| |
| 42 | 40, 41 | syl 14 |
. . . . . . . . . . . 12
|
| 43 | 42 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 44 | 43 | adantr 276 |
. . . . . . . . . 10
|
| 45 | 44 | adantr 276 |
. . . . . . . . 9
|
| 46 | 39, 45 | mpbid 147 |
. . . . . . . 8
|
| 47 | 46 | a1d 22 |
. . . . . . 7
|
| 48 | 47 | expcom 116 |
. . . . . 6
|
| 49 | 6, 48 | jaoi 717 |
. . . . 5
|
| 50 | 4, 49 | mpcom 36 |
. . . 4
|
| 51 | 50 | impancom 260 |
. . 3
|
| 52 | 1, 51 | sylbi 121 |
. 2
|
| 53 | 52 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: nn0o 12089 gausslemma2dlem0b 15375 |
| Copyright terms: Public domain | W3C validator |