ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno Unicode version

Theorem nno 11603
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9398 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2 nnnn0 8984 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 nn0o1gt2 11602 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
42, 3sylan 281 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
5 eqneqall 2318 . . . . . . 7  |-  ( N  =  1  ->  ( N  =/=  1  ->  (
( N  -  1 )  /  2 )  e.  NN ) )
65a1d 22 . . . . . 6  |-  ( N  =  1  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
7 nn0z 9074 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
8 peano2zm 9092 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  -  1 )  e.  ZZ )
109ad2antlr 480 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  ZZ )
11 2cn 8791 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1211mulid2i 7769 . . . . . . . . . . . . . 14  |-  ( 1  x.  2 )  =  2
13 nnre 8727 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
1413ltp1d 8688 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
1514adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  ->  N  <  ( N  + 
1 ) )
16 2re 8790 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
1716a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
18 peano2nn 8732 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
1918nnred 8733 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
20 lttr 7838 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  ( N  +  1 )  e.  RR )  -> 
( ( 2  < 
N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2117, 13, 19, 20syl3anc 1216 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( 2  <  N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2221expdimp 257 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  <  ( N  +  1 )  ->  2  <  ( N  +  1 ) ) )
2315, 22mpd 13 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
2  <  ( N  +  1 ) )
2412, 23eqbrtrid 3963 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  x.  2 )  <  ( N  +  1 ) )
25 1red 7781 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  e.  RR )
2619adantr 274 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  +  1 )  e.  RR )
27 2pos 8811 . . . . . . . . . . . . . . . 16  |-  0  <  2
2816, 27pm3.2i 270 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 2  e.  RR  /\  0  <  2 ) )
30 ltmuldiv 8632 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( N  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
1  x.  2 )  <  ( N  + 
1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3125, 26, 29, 30syl3anc 1216 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( 1  x.  2 )  <  ( N  +  1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3224, 31mpbid 146 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  <  ( ( N  +  1 )  /  2 ) )
3319rehalfcld 8966 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  RR )
3433adantr 274 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( N  + 
1 )  /  2
)  e.  RR )
3525, 34posdifd 8294 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  <  (
( N  +  1 )  /  2 )  <->  0  <  ( ( ( N  +  1 )  /  2 )  -  1 ) ) )
3632, 35mpbid 146 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
0  <  ( (
( N  +  1 )  /  2 )  -  1 ) )
3736adantlr 468 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  0  <  (
( ( N  + 
1 )  /  2
)  -  1 ) )
38 elnnz 9064 . . . . . . . . . 10  |-  ( ( ( ( N  + 
1 )  /  2
)  -  1 )  e.  NN  <->  ( (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ  /\  0  <  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
3910, 37, 38sylanbrc 413 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN )
40 nncn 8728 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
41 xp1d2m1eqxm1d2 8972 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4240, 41syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4342eleq1d 2208 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  / 
2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4443adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4544adantr 274 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( ( N  +  1 )  /  2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  / 
2 )  e.  NN ) )
4639, 45mpbid 146 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( N  -  1 )  / 
2 )  e.  NN )
4746a1d 22 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( N  =/=  1  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4847expcom 115 . . . . . 6  |-  ( 2  <  N  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
496, 48jaoi 705 . . . . 5  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
504, 49mpcom 36 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
5150impancom 258 . . 3  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
521, 51sylbi 120 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
5352imp 123 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933    / cdiv 8432   NNcn 8720   2c2 8771   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  nn0o  11604
  Copyright terms: Public domain W3C validator