ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno Unicode version

Theorem nno 11639
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9425 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2 nnnn0 9008 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 nn0o1gt2 11638 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
42, 3sylan 281 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
5 eqneqall 2319 . . . . . . 7  |-  ( N  =  1  ->  ( N  =/=  1  ->  (
( N  -  1 )  /  2 )  e.  NN ) )
65a1d 22 . . . . . 6  |-  ( N  =  1  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
7 nn0z 9098 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
8 peano2zm 9116 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  -  1 )  e.  ZZ )
109ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  ZZ )
11 2cn 8815 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1211mulid2i 7793 . . . . . . . . . . . . . 14  |-  ( 1  x.  2 )  =  2
13 nnre 8751 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
1413ltp1d 8712 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
1514adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  ->  N  <  ( N  + 
1 ) )
16 2re 8814 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
1716a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
18 peano2nn 8756 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
1918nnred 8757 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
20 lttr 7862 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  ( N  +  1 )  e.  RR )  -> 
( ( 2  < 
N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2117, 13, 19, 20syl3anc 1217 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( 2  <  N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2221expdimp 257 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  <  ( N  +  1 )  ->  2  <  ( N  +  1 ) ) )
2315, 22mpd 13 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
2  <  ( N  +  1 ) )
2412, 23eqbrtrid 3971 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  x.  2 )  <  ( N  +  1 ) )
25 1red 7805 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  e.  RR )
2619adantr 274 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  +  1 )  e.  RR )
27 2pos 8835 . . . . . . . . . . . . . . . 16  |-  0  <  2
2816, 27pm3.2i 270 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 2  e.  RR  /\  0  <  2 ) )
30 ltmuldiv 8656 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( N  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
1  x.  2 )  <  ( N  + 
1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3125, 26, 29, 30syl3anc 1217 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( 1  x.  2 )  <  ( N  +  1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3224, 31mpbid 146 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  <  ( ( N  +  1 )  /  2 ) )
3319rehalfcld 8990 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  RR )
3433adantr 274 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( N  + 
1 )  /  2
)  e.  RR )
3525, 34posdifd 8318 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  <  (
( N  +  1 )  /  2 )  <->  0  <  ( ( ( N  +  1 )  /  2 )  -  1 ) ) )
3632, 35mpbid 146 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
0  <  ( (
( N  +  1 )  /  2 )  -  1 ) )
3736adantlr 469 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  0  <  (
( ( N  + 
1 )  /  2
)  -  1 ) )
38 elnnz 9088 . . . . . . . . . 10  |-  ( ( ( ( N  + 
1 )  /  2
)  -  1 )  e.  NN  <->  ( (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ  /\  0  <  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
3910, 37, 38sylanbrc 414 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN )
40 nncn 8752 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
41 xp1d2m1eqxm1d2 8996 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4240, 41syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4342eleq1d 2209 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  / 
2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4443adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4544adantr 274 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( ( N  +  1 )  /  2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  / 
2 )  e.  NN ) )
4639, 45mpbid 146 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( N  -  1 )  / 
2 )  e.  NN )
4746a1d 22 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( N  =/=  1  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4847expcom 115 . . . . . 6  |-  ( 2  <  N  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
496, 48jaoi 706 . . . . 5  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
504, 49mpcom 36 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
5150impancom 258 . . 3  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
521, 51sylbi 120 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
5352imp 123 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481    =/= wne 2309   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957    / cdiv 8456   NNcn 8744   2c2 8795   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351
This theorem is referenced by:  nn0o  11640
  Copyright terms: Public domain W3C validator