| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nno | Unicode version | ||
| Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| nno |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 9727 |
. . 3
| |
| 2 | nnnn0 9304 |
. . . . . 6
| |
| 3 | nn0o1gt2 12249 |
. . . . . 6
| |
| 4 | 2, 3 | sylan 283 |
. . . . 5
|
| 5 | eqneqall 2386 |
. . . . . . 7
| |
| 6 | 5 | a1d 22 |
. . . . . 6
|
| 7 | nn0z 9394 |
. . . . . . . . . . . 12
| |
| 8 | peano2zm 9412 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . . . 11
|
| 10 | 9 | ad2antlr 489 |
. . . . . . . . . 10
|
| 11 | 2cn 9109 |
. . . . . . . . . . . . . . 15
| |
| 12 | 11 | mullidi 8077 |
. . . . . . . . . . . . . 14
|
| 13 | nnre 9045 |
. . . . . . . . . . . . . . . . 17
| |
| 14 | 13 | ltp1d 9005 |
. . . . . . . . . . . . . . . 16
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 16 | 2re 9108 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | 16 | a1i 9 |
. . . . . . . . . . . . . . . . 17
|
| 18 | peano2nn 9050 |
. . . . . . . . . . . . . . . . . 18
| |
| 19 | 18 | nnred 9051 |
. . . . . . . . . . . . . . . . 17
|
| 20 | lttr 8148 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 17, 13, 19, 20 | syl3anc 1250 |
. . . . . . . . . . . . . . . 16
|
| 22 | 21 | expdimp 259 |
. . . . . . . . . . . . . . 15
|
| 23 | 15, 22 | mpd 13 |
. . . . . . . . . . . . . 14
|
| 24 | 12, 23 | eqbrtrid 4080 |
. . . . . . . . . . . . 13
|
| 25 | 1red 8089 |
. . . . . . . . . . . . . 14
| |
| 26 | 19 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 27 | 2pos 9129 |
. . . . . . . . . . . . . . . 16
| |
| 28 | 16, 27 | pm3.2i 272 |
. . . . . . . . . . . . . . 15
|
| 29 | 28 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 30 | ltmuldiv 8949 |
. . . . . . . . . . . . . 14
| |
| 31 | 25, 26, 29, 30 | syl3anc 1250 |
. . . . . . . . . . . . 13
|
| 32 | 24, 31 | mpbid 147 |
. . . . . . . . . . . 12
|
| 33 | 19 | rehalfcld 9286 |
. . . . . . . . . . . . . 14
|
| 34 | 33 | adantr 276 |
. . . . . . . . . . . . 13
|
| 35 | 25, 34 | posdifd 8607 |
. . . . . . . . . . . 12
|
| 36 | 32, 35 | mpbid 147 |
. . . . . . . . . . 11
|
| 37 | 36 | adantlr 477 |
. . . . . . . . . 10
|
| 38 | elnnz 9384 |
. . . . . . . . . 10
| |
| 39 | 10, 37, 38 | sylanbrc 417 |
. . . . . . . . 9
|
| 40 | nncn 9046 |
. . . . . . . . . . . . 13
| |
| 41 | xp1d2m1eqxm1d2 9292 |
. . . . . . . . . . . . 13
| |
| 42 | 40, 41 | syl 14 |
. . . . . . . . . . . 12
|
| 43 | 42 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 44 | 43 | adantr 276 |
. . . . . . . . . 10
|
| 45 | 44 | adantr 276 |
. . . . . . . . 9
|
| 46 | 39, 45 | mpbid 147 |
. . . . . . . 8
|
| 47 | 46 | a1d 22 |
. . . . . . 7
|
| 48 | 47 | expcom 116 |
. . . . . 6
|
| 49 | 6, 48 | jaoi 718 |
. . . . 5
|
| 50 | 4, 49 | mpcom 36 |
. . . 4
|
| 51 | 50 | impancom 260 |
. . 3
|
| 52 | 1, 51 | sylbi 121 |
. 2
|
| 53 | 52 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 |
| This theorem is referenced by: nn0o 12251 gausslemma2dlem0b 15560 |
| Copyright terms: Public domain | W3C validator |