ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nno Unicode version

Theorem nno 11843
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nno  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )

Proof of Theorem nno
StepHypRef Expression
1 eluz2b3 9542 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
2 nnnn0 9121 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 nn0o1gt2 11842 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
42, 3sylan 281 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
5 eqneqall 2346 . . . . . . 7  |-  ( N  =  1  ->  ( N  =/=  1  ->  (
( N  -  1 )  /  2 )  e.  NN ) )
65a1d 22 . . . . . 6  |-  ( N  =  1  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
7 nn0z 9211 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  +  1 )  /  2 )  e.  ZZ )
8 peano2zm 9229 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  /  2 )  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ )
97, 8syl 14 . . . . . . . . . . 11  |-  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  -  1 )  e.  ZZ )
109ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  ZZ )
11 2cn 8928 . . . . . . . . . . . . . . 15  |-  2  e.  CC
1211mulid2i 7902 . . . . . . . . . . . . . 14  |-  ( 1  x.  2 )  =  2
13 nnre 8864 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  RR )
1413ltp1d 8825 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
1514adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  ->  N  <  ( N  + 
1 ) )
16 2re 8927 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
1716a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
18 peano2nn 8869 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
1918nnred 8870 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
20 lttr 7972 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  N  e.  RR  /\  ( N  +  1 )  e.  RR )  -> 
( ( 2  < 
N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2117, 13, 19, 20syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( 2  <  N  /\  N  <  ( N  +  1 ) )  ->  2  <  ( N  +  1 ) ) )
2221expdimp 257 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  <  ( N  +  1 )  ->  2  <  ( N  +  1 ) ) )
2315, 22mpd 13 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
2  <  ( N  +  1 ) )
2412, 23eqbrtrid 4017 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  x.  2 )  <  ( N  +  1 ) )
25 1red 7914 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  e.  RR )
2619adantr 274 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( N  +  1 )  e.  RR )
27 2pos 8948 . . . . . . . . . . . . . . . 16  |-  0  <  2
2816, 27pm3.2i 270 . . . . . . . . . . . . . . 15  |-  ( 2  e.  RR  /\  0  <  2 )
2928a1i 9 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 2  e.  RR  /\  0  <  2 ) )
30 ltmuldiv 8769 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( N  +  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
1  x.  2 )  <  ( N  + 
1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3125, 26, 29, 30syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( 1  x.  2 )  <  ( N  +  1 )  <->  1  <  ( ( N  +  1 )  /  2 ) ) )
3224, 31mpbid 146 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
1  <  ( ( N  +  1 )  /  2 ) )
3319rehalfcld 9103 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  2 )  e.  RR )
3433adantr 274 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( ( N  + 
1 )  /  2
)  e.  RR )
3525, 34posdifd 8430 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
( 1  <  (
( N  +  1 )  /  2 )  <->  0  <  ( ( ( N  +  1 )  /  2 )  -  1 ) ) )
3632, 35mpbid 146 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  2  <  N )  -> 
0  <  ( (
( N  +  1 )  /  2 )  -  1 ) )
3736adantlr 469 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  0  <  (
( ( N  + 
1 )  /  2
)  -  1 ) )
38 elnnz 9201 . . . . . . . . . 10  |-  ( ( ( ( N  + 
1 )  /  2
)  -  1 )  e.  NN  <->  ( (
( ( N  + 
1 )  /  2
)  -  1 )  e.  ZZ  /\  0  <  ( ( ( N  +  1 )  / 
2 )  -  1 ) ) )
3910, 37, 38sylanbrc 414 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN )
40 nncn 8865 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
41 xp1d2m1eqxm1d2 9109 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4240, 41syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  -  1 )  =  ( ( N  -  1 )  / 
2 ) )
4342eleq1d 2235 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  / 
2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4443adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( ( N  +  1 )  /  2 )  - 
1 )  e.  NN  <->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4544adantr 274 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( ( ( N  +  1 )  /  2 )  -  1 )  e.  NN  <->  ( ( N  -  1 )  / 
2 )  e.  NN ) )
4639, 45mpbid 146 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( ( N  -  1 )  / 
2 )  e.  NN )
4746a1d 22 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  /\  2  <  N )  ->  ( N  =/=  1  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
4847expcom 115 . . . . . 6  |-  ( 2  <  N  ->  (
( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
496, 48jaoi 706 . . . . 5  |-  ( ( N  =  1  \/  2  <  N )  ->  ( ( N  e.  NN  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) ) )
504, 49mpcom 36 . . . 4  |-  ( ( N  e.  NN  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =/=  1  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
5150impancom 258 . . 3  |-  ( ( N  e.  NN  /\  N  =/=  1 )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( ( N  - 
1 )  /  2
)  e.  NN ) )
521, 51sylbi 120 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( N  +  1 )  /  2 )  e.  NN0  ->  ( ( N  -  1 )  /  2 )  e.  NN ) )
5352imp 123 1  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  (
( N  +  1 )  /  2 )  e.  NN0 )  -> 
( ( N  - 
1 )  /  2
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    - cmin 8069    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  nn0o  11844
  Copyright terms: Public domain W3C validator