Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcne | Unicode version |
Description: Decidable equality expressed in terms of . Basically the same as df-dc 825. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
dcne | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 825 | . 2 DECID | |
2 | df-ne 2335 | . . 3 | |
3 | 2 | orbi2i 752 | . 2 |
4 | 1, 3 | bitr4i 186 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wo 698 DECID wdc 824 wceq 1342 wne 2334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-ne 2335 |
This theorem is referenced by: updjudhf 7038 zdceq 9260 nn0lt2 9266 xlesubadd 9813 qdceq 10176 xrmaxadd 11196 nn0seqcvgd 11967 pcxnn0cl 12236 pcge0 12238 pcdvdsb 12245 pcneg 12250 pcdvdstr 12252 pcgcd1 12253 pc2dvds 12255 pcz 12257 pcprmpw2 12258 pcaddlem 12264 pcadd 12265 pcmpt 12267 qexpz 12276 tridceq 13828 |
Copyright terms: Public domain | W3C validator |