ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcne Unicode version

Theorem dcne 2345
Description: Decidable equality expressed in terms of  =/=. Basically the same as df-dc 825. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
dcne  |-  (DECID  A  =  B  <->  ( A  =  B  \/  A  =/= 
B ) )

Proof of Theorem dcne
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  A  =  B  <->  ( A  =  B  \/  -.  A  =  B ) )
2 df-ne 2335 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
32orbi2i 752 . 2  |-  ( ( A  =  B  \/  A  =/=  B )  <->  ( A  =  B  \/  -.  A  =  B )
)
41, 3bitr4i 186 1  |-  (DECID  A  =  B  <->  ( A  =  B  \/  A  =/= 
B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1342    =/= wne 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825  df-ne 2335
This theorem is referenced by:  updjudhf  7038  zdceq  9260  nn0lt2  9266  xlesubadd  9813  qdceq  10176  xrmaxadd  11196  nn0seqcvgd  11967  pcxnn0cl  12236  pcge0  12238  pcdvdsb  12245  pcneg  12250  pcdvdstr  12252  pcgcd1  12253  pc2dvds  12255  pcz  12257  pcprmpw2  12258  pcaddlem  12264  pcadd  12265  pcmpt  12267  qexpz  12276  tridceq  13828
  Copyright terms: Public domain W3C validator