| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | Unicode version | ||
| Description: Decidable equality
expressed in terms of |
| Ref | Expression |
|---|---|
| dcne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 840 |
. 2
| |
| 2 | df-ne 2401 |
. . 3
| |
| 3 | 2 | orbi2i 767 |
. 2
|
| 4 | 1, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ne 2401 |
| This theorem is referenced by: updjudhf 7246 pr1or2 7367 zdceq 9522 nn0lt2 9528 xlesubadd 10079 qdceq 10464 ccat1st1st 11172 swrdccatin1 11257 xrmaxadd 11772 fsumdvds 12353 nn0seqcvgd 12563 pcxnn0cl 12833 pcxqcl 12835 pcge0 12836 pcdvdsb 12843 pcneg 12848 pcdvdstr 12850 pcgcd1 12851 pc2dvds 12853 pcz 12855 pcprmpw2 12856 pcaddlem 12862 pcadd 12863 pcmpt 12866 qexpz 12875 4sqlem19 12932 lgsneg1 15704 lgsdirprm 15713 lgsdir 15714 lgsne0 15717 lgsdirnn0 15726 lgsdinn0 15727 2sqlem9 15803 tridceq 16424 |
| Copyright terms: Public domain | W3C validator |