| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | Unicode version | ||
| Description: Decidable equality
expressed in terms of |
| Ref | Expression |
|---|---|
| dcne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | df-ne 2377 |
. . 3
| |
| 3 | 2 | orbi2i 764 |
. 2
|
| 4 | 1, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-ne 2377 |
| This theorem is referenced by: updjudhf 7181 zdceq 9448 nn0lt2 9454 xlesubadd 10005 qdceq 10387 ccat1st1st 11093 xrmaxadd 11572 fsumdvds 12153 nn0seqcvgd 12363 pcxnn0cl 12633 pcxqcl 12635 pcge0 12636 pcdvdsb 12643 pcneg 12648 pcdvdstr 12650 pcgcd1 12651 pc2dvds 12653 pcz 12655 pcprmpw2 12656 pcaddlem 12662 pcadd 12663 pcmpt 12666 qexpz 12675 4sqlem19 12732 lgsneg1 15502 lgsdirprm 15511 lgsdir 15512 lgsne0 15515 lgsdirnn0 15524 lgsdinn0 15525 2sqlem9 15601 tridceq 15999 |
| Copyright terms: Public domain | W3C validator |