| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcne | Unicode version | ||
| Description: Decidable equality
expressed in terms of |
| Ref | Expression |
|---|---|
| dcne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | df-ne 2379 |
. . 3
| |
| 3 | 2 | orbi2i 764 |
. 2
|
| 4 | 1, 3 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-ne 2379 |
| This theorem is referenced by: updjudhf 7207 pr1or2 7328 zdceq 9483 nn0lt2 9489 xlesubadd 10040 qdceq 10424 ccat1st1st 11131 swrdccatin1 11216 xrmaxadd 11687 fsumdvds 12268 nn0seqcvgd 12478 pcxnn0cl 12748 pcxqcl 12750 pcge0 12751 pcdvdsb 12758 pcneg 12763 pcdvdstr 12765 pcgcd1 12766 pc2dvds 12768 pcz 12770 pcprmpw2 12771 pcaddlem 12777 pcadd 12778 pcmpt 12781 qexpz 12790 4sqlem19 12847 lgsneg1 15617 lgsdirprm 15626 lgsdir 15627 lgsne0 15630 lgsdirnn0 15639 lgsdinn0 15640 2sqlem9 15716 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |