ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc2 Unicode version

Theorem eqsbc2 3010
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  x  <->  B  =  A ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc2
StepHypRef Expression
1 eqsbc1 2989 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
2 eqcom 2167 . . 3  |-  ( B  =  x  <->  x  =  B )
32sbcbii 3009 . 2  |-  ( [. A  /  x ]. B  =  x  <->  [. A  /  x ]. x  =  B
)
4 eqcom 2167 . 2  |-  ( B  =  A  <->  A  =  B )
51, 3, 43bitr4g 222 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  x  <->  B  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   [.wsbc 2950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-sbc 2951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator