ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbii Unicode version

Theorem sbcbii 3023
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
sbcbii  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )

Proof of Theorem sbcbii
StepHypRef Expression
1 sbcbii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32sbcbidv 3022 . 2  |-  ( T. 
->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )
43mptru 1362 1  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1354   [.wsbc 2963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2964
This theorem is referenced by:  eqsbc2  3024  sbc3an  3025  sbccomlem  3038  sbccom  3039  sbcabel  3045  csbco  3068  csbcow  3069  sbcnel12g  3075  sbcne12g  3076  sbccsbg  3087  sbccsb2g  3088  csbnestgf  3110  csbabg  3119  sbcssg  3533  sbcrel  4713  difopab  4761  sbcfung  5241  f1od2  6236  mpoxopovel  6242  bezoutlemnewy  11997  bezoutlemstep  11998  bezoutlemmain  11999
  Copyright terms: Public domain W3C validator