ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbii Unicode version

Theorem sbcbii 3058
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
sbcbii  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )

Proof of Theorem sbcbii
StepHypRef Expression
1 sbcbii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32sbcbidv 3057 . 2  |-  ( T. 
->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )
43mptru 1382 1  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1374   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-sbc 2999
This theorem is referenced by:  eqsbc2  3059  sbc3an  3060  sbccomlem  3073  sbccom  3074  sbcabel  3080  csbco  3103  csbcow  3104  sbcnel12g  3110  sbcne12g  3111  sbccsbg  3122  sbccsb2g  3123  csbnestgf  3146  csbabg  3155  sbcssg  3569  sbcrel  4761  difopab  4811  sbcfung  5295  f1od2  6321  mpoxopovel  6327  bezoutlemnewy  12317  bezoutlemstep  12318  bezoutlemmain  12319
  Copyright terms: Public domain W3C validator