ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbii Unicode version

Theorem sbcbii 3045
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
sbcbii  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )

Proof of Theorem sbcbii
StepHypRef Expression
1 sbcbii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32sbcbidv 3044 . 2  |-  ( T. 
->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) )
43mptru 1373 1  |-  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1365   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986
This theorem is referenced by:  eqsbc2  3046  sbc3an  3047  sbccomlem  3060  sbccom  3061  sbcabel  3067  csbco  3090  csbcow  3091  sbcnel12g  3097  sbcne12g  3098  sbccsbg  3109  sbccsb2g  3110  csbnestgf  3133  csbabg  3142  sbcssg  3555  sbcrel  4745  difopab  4795  sbcfung  5278  f1od2  6288  mpoxopovel  6294  bezoutlemnewy  12133  bezoutlemstep  12134  bezoutlemmain  12135
  Copyright terms: Public domain W3C validator