Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbii | Unicode version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 |
Ref | Expression |
---|---|
sbcbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | sbcbidv 3013 | . 2 |
4 | 3 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wtru 1349 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: eqsbc2 3015 sbc3an 3016 sbccomlem 3029 sbccom 3030 sbcabel 3036 csbco 3059 csbcow 3060 sbcnel12g 3066 sbcne12g 3067 sbccsbg 3078 sbccsb2g 3079 csbnestgf 3101 csbabg 3110 sbcssg 3524 sbcrel 4697 difopab 4744 sbcfung 5222 f1od2 6214 mpoxopovel 6220 bezoutlemnewy 11951 bezoutlemstep 11952 bezoutlemmain 11953 |
Copyright terms: Public domain | W3C validator |