| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbii | Unicode version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 |
|
| Ref | Expression |
|---|---|
| sbcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | sbcbidv 3057 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-sbc 2999 |
| This theorem is referenced by: eqsbc2 3059 sbc3an 3060 sbccomlem 3073 sbccom 3074 sbcabel 3080 csbco 3103 csbcow 3104 sbcnel12g 3110 sbcne12g 3111 sbccsbg 3122 sbccsb2g 3123 csbnestgf 3146 csbabg 3155 sbcssg 3569 sbcrel 4761 difopab 4811 sbcfung 5295 f1od2 6321 mpoxopovel 6327 bezoutlemnewy 12317 bezoutlemstep 12318 bezoutlemmain 12319 |
| Copyright terms: Public domain | W3C validator |