| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbii | Unicode version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 |
|
| Ref | Expression |
|---|---|
| sbcbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | sbcbidv 3064 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-sbc 3006 |
| This theorem is referenced by: eqsbc2 3066 sbc3an 3067 sbccomlem 3080 sbccom 3081 sbcabel 3088 csbco 3111 csbcow 3112 sbcnel12g 3118 sbcne12g 3119 sbccsbg 3130 sbccsb2g 3131 csbnestgf 3154 csbabg 3163 sbcssg 3577 sbcrel 4779 difopab 4829 sbcfung 5314 f1od2 6344 mpoxopovel 6350 bezoutlemnewy 12432 bezoutlemstep 12433 bezoutlemmain 12434 |
| Copyright terms: Public domain | W3C validator |