ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3an Unicode version

Theorem sbc3an 3047
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 982 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21sbcbii 3045 . . 3  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<-> 
[. A  /  x ]. ( ( ph  /\  ps )  /\  ch )
)
3 sbcan 3028 . . 3  |-  ( [. A  /  x ]. (
( ph  /\  ps )  /\  ch )  <->  ( [. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch ) )
4 sbcan 3028 . . . 4  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )
54anbi1i 458 . . 3  |-  ( (
[. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch ) )
62, 3, 53bitri 206 . 2  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
7 df-3an 982 . 2  |-  ( (
[. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
86, 7bitr4i 187 1  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator