ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3an Unicode version

Theorem sbc3an 3012
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 970 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21sbcbii 3010 . . 3  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<-> 
[. A  /  x ]. ( ( ph  /\  ps )  /\  ch )
)
3 sbcan 2993 . . 3  |-  ( [. A  /  x ]. (
( ph  /\  ps )  /\  ch )  <->  ( [. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch ) )
4 sbcan 2993 . . . 4  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )
54anbi1i 454 . . 3  |-  ( (
[. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch ) )
62, 3, 53bitri 205 . 2  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
7 df-3an 970 . 2  |-  ( (
[. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
86, 7bitr4i 186 1  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator