ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3an Unicode version

Theorem sbc3an 2998
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )

Proof of Theorem sbc3an
StepHypRef Expression
1 df-3an 965 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21sbcbii 2996 . . 3  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<-> 
[. A  /  x ]. ( ( ph  /\  ps )  /\  ch )
)
3 sbcan 2979 . . 3  |-  ( [. A  /  x ]. (
( ph  /\  ps )  /\  ch )  <->  ( [. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch ) )
4 sbcan 2979 . . . 4  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )
54anbi1i 454 . . 3  |-  ( (
[. A  /  x ]. ( ph  /\  ps )  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch ) )
62, 3, 53bitri 205 . 2  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
7 df-3an 965 . 2  |-  ( (
[. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )  /\  [. A  /  x ]. ch )
)
86, 7bitr4i 186 1  |-  ( [. A  /  x ]. ( ph  /\  ps  /\  ch ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 963   [.wsbc 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sbc 2938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator