ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc2 GIF version

Theorem eqsbc2 3046
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc2
StepHypRef Expression
1 eqsbc1 3025 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
2 eqcom 2195 . . 3 (𝐵 = 𝑥𝑥 = 𝐵)
32sbcbii 3045 . 2 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
4 eqcom 2195 . 2 (𝐵 = 𝐴𝐴 = 𝐵)
51, 3, 43bitr4g 223 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator