ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc1 Unicode version

Theorem eqsbc1 3025
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2297. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2987 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. x  =  B  <->  [. A  /  x ]. x  =  B )
)
2 eqeq1 2200 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
3 sbsbc 2989 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  [. y  /  x ]. x  =  B )
4 eqsb1 2297 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  y  =  B )
53, 4bitr3i 186 . 2  |-  ( [. y  /  x ]. x  =  B  <->  y  =  B )
61, 2, 5vtoclbg 2821 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   [wsb 1773    e. wcel 2164   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  sbceqal  3041  eqsbc2  3046
  Copyright terms: Public domain W3C validator