Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsbc1 | Unicode version |
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2279. (Contributed by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
eqsbc1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2962 | . 2 | |
2 | eqeq1 2182 | . 2 | |
3 | sbsbc 2964 | . . 3 | |
4 | eqsb1 2279 | . . 3 | |
5 | 3, 4 | bitr3i 186 | . 2 |
6 | 1, 2, 5 | vtoclbg 2796 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wsb 1760 wcel 2146 wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 |
This theorem is referenced by: sbceqal 3016 eqsbc2 3021 |
Copyright terms: Public domain | W3C validator |