ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc1 Unicode version

Theorem eqsbc1 3038
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2309. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3000 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. x  =  B  <->  [. A  /  x ]. x  =  B )
)
2 eqeq1 2212 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
3 sbsbc 3002 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  [. y  /  x ]. x  =  B )
4 eqsb1 2309 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  y  =  B )
53, 4bitr3i 186 . 2  |-  ( [. y  /  x ]. x  =  B  <->  y  =  B )
61, 2, 5vtoclbg 2834 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   [wsb 1785    e. wcel 2176   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999
This theorem is referenced by:  sbceqal  3054  eqsbc2  3059
  Copyright terms: Public domain W3C validator