ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc1 Unicode version

Theorem eqsbc1 2994
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2274. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem eqsbc1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2957 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. x  =  B  <->  [. A  /  x ]. x  =  B )
)
2 eqeq1 2177 . 2  |-  ( y  =  A  ->  (
y  =  B  <->  A  =  B ) )
3 sbsbc 2959 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  [. y  /  x ]. x  =  B )
4 eqsb1 2274 . . 3  |-  ( [ y  /  x ]
x  =  B  <->  y  =  B )
53, 4bitr3i 185 . 2  |-  ( [. y  /  x ]. x  =  B  <->  y  =  B )
61, 2, 5vtoclbg 2791 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   [wsb 1755    e. wcel 2141   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  sbceqal  3010  eqsbc2  3015
  Copyright terms: Public domain W3C validator