ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvisset Unicode version

Theorem eqvisset 2651
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2647 and issetri 2650. (Contributed by BJ, 27-Apr-2019.)
Assertion
Ref Expression
eqvisset  |-  ( x  =  A  ->  A  e.  _V )

Proof of Theorem eqvisset
StepHypRef Expression
1 vex 2644 . 2  |-  x  e. 
_V
2 eleq1 2162 . 2  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
31, 2mpbii 147 1  |-  ( x  =  A  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   _Vcvv 2641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-v 2643
This theorem is referenced by:  elxp5  4963  xpsnen  6644
  Copyright terms: Public domain W3C validator