| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvisset | Unicode version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2783 and issetri 2786. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. 2
| |
| 2 | eleq1 2270 |
. 2
| |
| 3 | 1, 2 | mpbii 148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: elxp5 5190 xpsnen 6941 fival 7098 |
| Copyright terms: Public domain | W3C validator |