ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvisset Unicode version

Theorem eqvisset 2782
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2778 and issetri 2781. (Contributed by BJ, 27-Apr-2019.)
Assertion
Ref Expression
eqvisset  |-  ( x  =  A  ->  A  e.  _V )

Proof of Theorem eqvisset
StepHypRef Expression
1 vex 2775 . 2  |-  x  e. 
_V
2 eleq1 2268 . 2  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
31, 2mpbii 148 1  |-  ( x  =  A  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  elxp5  5171  xpsnen  6916  fival  7072
  Copyright terms: Public domain W3C validator