| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp5 | Unicode version | ||
| Description: Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 5157 when the double intersection does not create class existence problems (caused by int0 3888). (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| elxp5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . . 4
| |
| 3 | elex 2774 |
. . . 4
| |
| 4 | 2, 3 | anim12i 338 |
. . 3
|
| 5 | opexg 4261 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | eleq1 2259 |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 6, 8 | mpbird 167 |
. . 3
|
| 10 | 4, 9 | sylan2 286 |
. 2
|
| 11 | elxp 4680 |
. . . 4
| |
| 12 | sneq 3633 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | rneqd 4895 |
. . . . . . . . . . . . 13
|
| 14 | 13 | unieqd 3850 |
. . . . . . . . . . . 12
|
| 15 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 16 | vex 2766 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | op2nda 5154 |
. . . . . . . . . . . 12
|
| 18 | 14, 17 | eqtr2di 2246 |
. . . . . . . . . . 11
|
| 19 | 18 | pm4.71ri 392 |
. . . . . . . . . 10
|
| 20 | 19 | anbi1i 458 |
. . . . . . . . 9
|
| 21 | anass 401 |
. . . . . . . . 9
| |
| 22 | 20, 21 | bitri 184 |
. . . . . . . 8
|
| 23 | 22 | exbii 1619 |
. . . . . . 7
|
| 24 | snexg 4217 |
. . . . . . . . . 10
| |
| 25 | rnexg 4931 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | uniexg 4474 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 14 |
. . . . . . . 8
|
| 29 | opeq2 3809 |
. . . . . . . . . . 11
| |
| 30 | 29 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 31 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 32 | 31 | anbi2d 464 |
. . . . . . . . . 10
|
| 33 | 30, 32 | anbi12d 473 |
. . . . . . . . 9
|
| 34 | 33 | ceqsexgv 2893 |
. . . . . . . 8
|
| 35 | 28, 34 | syl 14 |
. . . . . . 7
|
| 36 | 23, 35 | bitrid 192 |
. . . . . 6
|
| 37 | inteq 3877 |
. . . . . . . . . . . 12
| |
| 38 | 37 | inteqd 3879 |
. . . . . . . . . . 11
|
| 39 | 38 | adantl 277 |
. . . . . . . . . 10
|
| 40 | op1stbg 4514 |
. . . . . . . . . . . 12
| |
| 41 | 15, 28, 40 | sylancr 414 |
. . . . . . . . . . 11
|
| 42 | 41 | adantr 276 |
. . . . . . . . . 10
|
| 43 | 39, 42 | eqtr2d 2230 |
. . . . . . . . 9
|
| 44 | 43 | ex 115 |
. . . . . . . 8
|
| 45 | 44 | pm4.71rd 394 |
. . . . . . 7
|
| 46 | 45 | anbi1d 465 |
. . . . . 6
|
| 47 | anass 401 |
. . . . . . 7
| |
| 48 | 47 | a1i 9 |
. . . . . 6
|
| 49 | 36, 46, 48 | 3bitrd 214 |
. . . . 5
|
| 50 | 49 | exbidv 1839 |
. . . 4
|
| 51 | 11, 50 | bitrid 192 |
. . 3
|
| 52 | eqvisset 2773 |
. . . . . 6
| |
| 53 | 52 | adantr 276 |
. . . . 5
|
| 54 | 53 | exlimiv 1612 |
. . . 4
|
| 55 | 2 | ad2antrl 490 |
. . . 4
|
| 56 | opeq1 3808 |
. . . . . . 7
| |
| 57 | 56 | eqeq2d 2208 |
. . . . . 6
|
| 58 | eleq1 2259 |
. . . . . . 7
| |
| 59 | 58 | anbi1d 465 |
. . . . . 6
|
| 60 | 57, 59 | anbi12d 473 |
. . . . 5
|
| 61 | 60 | ceqsexgv 2893 |
. . . 4
|
| 62 | 54, 55, 61 | pm5.21nii 705 |
. . 3
|
| 63 | 51, 62 | bitrdi 196 |
. 2
|
| 64 | 1, 10, 63 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |