Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issetri | Unicode version |
Description: A way to say " is a set" (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
issetri.1 |
Ref | Expression |
---|---|
issetri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 | |
2 | isset 2741 | . 2 | |
3 | 1, 2 | mpbir 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wex 1490 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: 0ex 4125 inex1 4132 vpwex 4174 zfpair2 4204 uniex 4431 bdinex1 14211 bj-zfpair2 14222 bj-uniex 14229 bj-omex2 14289 |
Copyright terms: Public domain | W3C validator |