ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri Unicode version

Theorem issetri 2769
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1  |-  E. x  x  =  A
Assertion
Ref Expression
issetri  |-  A  e. 
_V
Distinct variable group:    x, A

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2  |-  E. x  x  =  A
2 isset 2766 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbir 146 1  |-  A  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  0ex  4156  inex1  4163  vpwex  4208  zfpair2  4239  uniex  4468  bdinex1  15391  bj-zfpair2  15402  bj-uniex  15409  bj-omex2  15469
  Copyright terms: Public domain W3C validator