ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri Unicode version

Theorem issetri 2786
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1  |-  E. x  x  =  A
Assertion
Ref Expression
issetri  |-  A  e. 
_V
Distinct variable group:    x, A

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2  |-  E. x  x  =  A
2 isset 2783 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbir 146 1  |-  A  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778
This theorem is referenced by:  0ex  4187  inex1  4194  vpwex  4239  zfpair2  4270  uniex  4502  bdinex1  16034  bj-zfpair2  16045  bj-uniex  16052  bj-omex2  16112
  Copyright terms: Public domain W3C validator