| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issetri | Unicode version | ||
| Description: A way to say " |
| Ref | Expression |
|---|---|
| issetri.1 |
|
| Ref | Expression |
|---|---|
| issetri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issetri.1 |
. 2
| |
| 2 | isset 2783 |
. 2
| |
| 3 | 1, 2 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: 0ex 4187 inex1 4194 vpwex 4239 zfpair2 4270 uniex 4502 bdinex1 16034 bj-zfpair2 16045 bj-uniex 16052 bj-omex2 16112 |
| Copyright terms: Public domain | W3C validator |