ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri Unicode version

Theorem issetri 2735
Description: A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1  |-  E. x  x  =  A
Assertion
Ref Expression
issetri  |-  A  e. 
_V
Distinct variable group:    x, A

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2  |-  E. x  x  =  A
2 isset 2732 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2mpbir 145 1  |-  A  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  0ex  4109  inex1  4116  vpwex  4158  zfpair2  4188  uniex  4415  bdinex1  13781  bj-zfpair2  13792  bj-uniex  13799  bj-omex2  13859
  Copyright terms: Public domain W3C validator