Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetri Unicode version

Theorem issetri 2699
 Description: A way to say " is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
issetri.1
Assertion
Ref Expression
issetri
Distinct variable group:   ,

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2
2 isset 2696 . 2
31, 2mpbir 145 1
 Colors of variables: wff set class Syntax hints:   wceq 1332  wex 1469   wcel 1481  cvv 2690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2692 This theorem is referenced by:  0ex  4064  inex1  4071  vpwex  4112  zfpair2  4141  uniex  4368  bdinex1  13288  bj-zfpair2  13299  bj-uniex  13306  bj-omex2  13366
 Copyright terms: Public domain W3C validator