| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsnen | Unicode version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpsnen.1 |
|
| xpsnen.2 |
|
| Ref | Expression |
|---|---|
| xpsnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsnen.1 |
. . 3
| |
| 2 | xpsnen.2 |
. . . 4
| |
| 3 | 2 | snex 4269 |
. . 3
|
| 4 | 1, 3 | xpex 4834 |
. 2
|
| 5 | elxp 4736 |
. . 3
| |
| 6 | inteq 3926 |
. . . . . . . 8
| |
| 7 | 6 | inteqd 3928 |
. . . . . . 7
|
| 8 | vex 2802 |
. . . . . . . 8
| |
| 9 | vex 2802 |
. . . . . . . 8
| |
| 10 | 8, 9 | op1stb 4569 |
. . . . . . 7
|
| 11 | 7, 10 | eqtrdi 2278 |
. . . . . 6
|
| 12 | 11, 8 | eqeltrdi 2320 |
. . . . 5
|
| 13 | 12 | adantr 276 |
. . . 4
|
| 14 | 13 | exlimivv 1943 |
. . 3
|
| 15 | 5, 14 | sylbi 121 |
. 2
|
| 16 | 8, 2 | opex 4315 |
. . 3
|
| 17 | 16 | a1i 9 |
. 2
|
| 18 | eqvisset 2810 |
. . . . 5
| |
| 19 | ancom 266 |
. . . . . . . . . . 11
| |
| 20 | anass 401 |
. . . . . . . . . . 11
| |
| 21 | velsn 3683 |
. . . . . . . . . . . 12
| |
| 22 | 21 | anbi1i 458 |
. . . . . . . . . . 11
|
| 23 | 19, 20, 22 | 3bitr3i 210 |
. . . . . . . . . 10
|
| 24 | 23 | exbii 1651 |
. . . . . . . . 9
|
| 25 | opeq2 3858 |
. . . . . . . . . . . 12
| |
| 26 | 25 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 27 | 26 | anbi1d 465 |
. . . . . . . . . 10
|
| 28 | 2, 27 | ceqsexv 2839 |
. . . . . . . . 9
|
| 29 | inteq 3926 |
. . . . . . . . . . . . . 14
| |
| 30 | 29 | inteqd 3928 |
. . . . . . . . . . . . 13
|
| 31 | 8, 2 | op1stb 4569 |
. . . . . . . . . . . . 13
|
| 32 | 30, 31 | eqtr2di 2279 |
. . . . . . . . . . . 12
|
| 33 | 32 | pm4.71ri 392 |
. . . . . . . . . . 11
|
| 34 | 33 | anbi1i 458 |
. . . . . . . . . 10
|
| 35 | anass 401 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | bitri 184 |
. . . . . . . . 9
|
| 37 | 24, 28, 36 | 3bitri 206 |
. . . . . . . 8
|
| 38 | 37 | exbii 1651 |
. . . . . . 7
|
| 39 | 5, 38 | bitri 184 |
. . . . . 6
|
| 40 | opeq1 3857 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq2d 2241 |
. . . . . . . 8
|
| 42 | eleq1 2292 |
. . . . . . . 8
| |
| 43 | 41, 42 | anbi12d 473 |
. . . . . . 7
|
| 44 | 43 | ceqsexgv 2932 |
. . . . . 6
|
| 45 | 39, 44 | bitrid 192 |
. . . . 5
|
| 46 | 18, 45 | syl 14 |
. . . 4
|
| 47 | 46 | pm5.32ri 455 |
. . 3
|
| 48 | 32 | adantr 276 |
. . . . 5
|
| 49 | 48 | pm4.71i 391 |
. . . 4
|
| 50 | 43 | pm5.32ri 455 |
. . . 4
|
| 51 | 49, 50 | bitr2i 185 |
. . 3
|
| 52 | ancom 266 |
. . 3
| |
| 53 | 47, 51, 52 | 3bitri 206 |
. 2
|
| 54 | 4, 1, 15, 17, 53 | en2i 6921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-en 6888 |
| This theorem is referenced by: xpsneng 6981 endisj 6983 |
| Copyright terms: Public domain | W3C validator |