Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpsnen | Unicode version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
xpsnen.1 | |
xpsnen.2 |
Ref | Expression |
---|---|
xpsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnen.1 | . . 3 | |
2 | xpsnen.2 | . . . 4 | |
3 | 2 | snex 4171 | . . 3 |
4 | 1, 3 | xpex 4726 | . 2 |
5 | elxp 4628 | . . 3 | |
6 | inteq 3834 | . . . . . . . 8 | |
7 | 6 | inteqd 3836 | . . . . . . 7 |
8 | vex 2733 | . . . . . . . 8 | |
9 | vex 2733 | . . . . . . . 8 | |
10 | 8, 9 | op1stb 4463 | . . . . . . 7 |
11 | 7, 10 | eqtrdi 2219 | . . . . . 6 |
12 | 11, 8 | eqeltrdi 2261 | . . . . 5 |
13 | 12 | adantr 274 | . . . 4 |
14 | 13 | exlimivv 1889 | . . 3 |
15 | 5, 14 | sylbi 120 | . 2 |
16 | 8, 2 | opex 4214 | . . 3 |
17 | 16 | a1i 9 | . 2 |
18 | eqvisset 2740 | . . . . 5 | |
19 | ancom 264 | . . . . . . . . . . 11 | |
20 | anass 399 | . . . . . . . . . . 11 | |
21 | velsn 3600 | . . . . . . . . . . . 12 | |
22 | 21 | anbi1i 455 | . . . . . . . . . . 11 |
23 | 19, 20, 22 | 3bitr3i 209 | . . . . . . . . . 10 |
24 | 23 | exbii 1598 | . . . . . . . . 9 |
25 | opeq2 3766 | . . . . . . . . . . . 12 | |
26 | 25 | eqeq2d 2182 | . . . . . . . . . . 11 |
27 | 26 | anbi1d 462 | . . . . . . . . . 10 |
28 | 2, 27 | ceqsexv 2769 | . . . . . . . . 9 |
29 | inteq 3834 | . . . . . . . . . . . . . 14 | |
30 | 29 | inteqd 3836 | . . . . . . . . . . . . 13 |
31 | 8, 2 | op1stb 4463 | . . . . . . . . . . . . 13 |
32 | 30, 31 | eqtr2di 2220 | . . . . . . . . . . . 12 |
33 | 32 | pm4.71ri 390 | . . . . . . . . . . 11 |
34 | 33 | anbi1i 455 | . . . . . . . . . 10 |
35 | anass 399 | . . . . . . . . . 10 | |
36 | 34, 35 | bitri 183 | . . . . . . . . 9 |
37 | 24, 28, 36 | 3bitri 205 | . . . . . . . 8 |
38 | 37 | exbii 1598 | . . . . . . 7 |
39 | 5, 38 | bitri 183 | . . . . . 6 |
40 | opeq1 3765 | . . . . . . . . 9 | |
41 | 40 | eqeq2d 2182 | . . . . . . . 8 |
42 | eleq1 2233 | . . . . . . . 8 | |
43 | 41, 42 | anbi12d 470 | . . . . . . 7 |
44 | 43 | ceqsexgv 2859 | . . . . . 6 |
45 | 39, 44 | syl5bb 191 | . . . . 5 |
46 | 18, 45 | syl 14 | . . . 4 |
47 | 46 | pm5.32ri 452 | . . 3 |
48 | 32 | adantr 274 | . . . . 5 |
49 | 48 | pm4.71i 389 | . . . 4 |
50 | 43 | pm5.32ri 452 | . . . 4 |
51 | 49, 50 | bitr2i 184 | . . 3 |
52 | ancom 264 | . . 3 | |
53 | 47, 51, 52 | 3bitri 205 | . 2 |
54 | 4, 1, 15, 17, 53 | en2i 6748 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 csn 3583 cop 3586 cint 3831 class class class wbr 3989 cxp 4609 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-en 6719 |
This theorem is referenced by: xpsneng 6800 endisj 6802 |
Copyright terms: Public domain | W3C validator |