Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpsnen | Unicode version |
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
xpsnen.1 | |
xpsnen.2 |
Ref | Expression |
---|---|
xpsnen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsnen.1 | . . 3 | |
2 | xpsnen.2 | . . . 4 | |
3 | 2 | snex 4164 | . . 3 |
4 | 1, 3 | xpex 4719 | . 2 |
5 | elxp 4621 | . . 3 | |
6 | inteq 3827 | . . . . . . . 8 | |
7 | 6 | inteqd 3829 | . . . . . . 7 |
8 | vex 2729 | . . . . . . . 8 | |
9 | vex 2729 | . . . . . . . 8 | |
10 | 8, 9 | op1stb 4456 | . . . . . . 7 |
11 | 7, 10 | eqtrdi 2215 | . . . . . 6 |
12 | 11, 8 | eqeltrdi 2257 | . . . . 5 |
13 | 12 | adantr 274 | . . . 4 |
14 | 13 | exlimivv 1884 | . . 3 |
15 | 5, 14 | sylbi 120 | . 2 |
16 | 8, 2 | opex 4207 | . . 3 |
17 | 16 | a1i 9 | . 2 |
18 | eqvisset 2736 | . . . . 5 | |
19 | ancom 264 | . . . . . . . . . . 11 | |
20 | anass 399 | . . . . . . . . . . 11 | |
21 | velsn 3593 | . . . . . . . . . . . 12 | |
22 | 21 | anbi1i 454 | . . . . . . . . . . 11 |
23 | 19, 20, 22 | 3bitr3i 209 | . . . . . . . . . 10 |
24 | 23 | exbii 1593 | . . . . . . . . 9 |
25 | opeq2 3759 | . . . . . . . . . . . 12 | |
26 | 25 | eqeq2d 2177 | . . . . . . . . . . 11 |
27 | 26 | anbi1d 461 | . . . . . . . . . 10 |
28 | 2, 27 | ceqsexv 2765 | . . . . . . . . 9 |
29 | inteq 3827 | . . . . . . . . . . . . . 14 | |
30 | 29 | inteqd 3829 | . . . . . . . . . . . . 13 |
31 | 8, 2 | op1stb 4456 | . . . . . . . . . . . . 13 |
32 | 30, 31 | eqtr2di 2216 | . . . . . . . . . . . 12 |
33 | 32 | pm4.71ri 390 | . . . . . . . . . . 11 |
34 | 33 | anbi1i 454 | . . . . . . . . . 10 |
35 | anass 399 | . . . . . . . . . 10 | |
36 | 34, 35 | bitri 183 | . . . . . . . . 9 |
37 | 24, 28, 36 | 3bitri 205 | . . . . . . . 8 |
38 | 37 | exbii 1593 | . . . . . . 7 |
39 | 5, 38 | bitri 183 | . . . . . 6 |
40 | opeq1 3758 | . . . . . . . . 9 | |
41 | 40 | eqeq2d 2177 | . . . . . . . 8 |
42 | eleq1 2229 | . . . . . . . 8 | |
43 | 41, 42 | anbi12d 465 | . . . . . . 7 |
44 | 43 | ceqsexgv 2855 | . . . . . 6 |
45 | 39, 44 | syl5bb 191 | . . . . 5 |
46 | 18, 45 | syl 14 | . . . 4 |
47 | 46 | pm5.32ri 451 | . . 3 |
48 | 32 | adantr 274 | . . . . 5 |
49 | 48 | pm4.71i 389 | . . . 4 |
50 | 43 | pm5.32ri 451 | . . . 4 |
51 | 49, 50 | bitr2i 184 | . . 3 |
52 | ancom 264 | . . 3 | |
53 | 47, 51, 52 | 3bitri 205 | . 2 |
54 | 4, 1, 15, 17, 53 | en2i 6736 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 csn 3576 cop 3579 cint 3824 class class class wbr 3982 cxp 4602 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 |
This theorem is referenced by: xpsneng 6788 endisj 6790 |
Copyright terms: Public domain | W3C validator |