ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen Unicode version

Theorem xpsnen 6815
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpsnen.1  |-  A  e. 
_V
xpsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
xpsnen  |-  ( A  X.  { B }
)  ~~  A

Proof of Theorem xpsnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsnen.1 . . 3  |-  A  e. 
_V
2 xpsnen.2 . . . 4  |-  B  e. 
_V
32snex 4182 . . 3  |-  { B }  e.  _V
41, 3xpex 4738 . 2  |-  ( A  X.  { B }
)  e.  _V
5 elxp 4640 . . 3  |-  ( y  e.  ( A  X.  { B } )  <->  E. x E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) ) )
6 inteq 3845 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  |^| y  =  |^| <.
x ,  z >.
)
76inteqd 3847 . . . . . . 7  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  z >.
)
8 vex 2740 . . . . . . . 8  |-  x  e. 
_V
9 vex 2740 . . . . . . . 8  |-  z  e. 
_V
108, 9op1stb 4475 . . . . . . 7  |-  |^| |^| <. x ,  z >.  =  x
117, 10eqtrdi 2226 . . . . . 6  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  x )
1211, 8eqeltrdi 2268 . . . . 5  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  e.  _V )
1312adantr 276 . . . 4  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
1413exlimivv 1896 . . 3  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
155, 14sylbi 121 . 2  |-  ( y  e.  ( A  X.  { B } )  ->  |^| |^| y  e.  _V )
168, 2opex 4226 . . 3  |-  <. x ,  B >.  e.  _V
1716a1i 9 . 2  |-  ( x  e.  A  ->  <. x ,  B >.  e.  _V )
18 eqvisset 2747 . . . . 5  |-  ( x  =  |^| |^| y  ->  |^| |^| y  e.  _V )
19 ancom 266 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( z  e.  { B }  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
20 anass 401 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) ) )
21 velsn 3608 . . . . . . . . . . . 12  |-  ( z  e.  { B }  <->  z  =  B )
2221anbi1i 458 . . . . . . . . . . 11  |-  ( ( z  e.  { B }  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2319, 20, 223bitr3i 210 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2423exbii 1605 . . . . . . . . 9  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  E. z
( z  =  B  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) ) )
25 opeq2 3777 . . . . . . . . . . . 12  |-  ( z  =  B  ->  <. x ,  z >.  =  <. x ,  B >. )
2625eqeq2d 2189 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
y  =  <. x ,  z >.  <->  y  =  <. x ,  B >. ) )
2726anbi1d 465 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( y  =  <. x ,  z >.  /\  x  e.  A )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
282, 27ceqsexv 2776 . . . . . . . . 9  |-  ( E. z ( z  =  B  /\  ( y  =  <. x ,  z
>.  /\  x  e.  A
) )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
29 inteq 3845 . . . . . . . . . . . . . 14  |-  ( y  =  <. x ,  B >.  ->  |^| y  =  |^| <.
x ,  B >. )
3029inteqd 3847 . . . . . . . . . . . . 13  |-  ( y  =  <. x ,  B >.  ->  |^| |^| y  =  |^| |^|
<. x ,  B >. )
318, 2op1stb 4475 . . . . . . . . . . . . 13  |-  |^| |^| <. x ,  B >.  =  x
3230, 31eqtr2di 2227 . . . . . . . . . . . 12  |-  ( y  =  <. x ,  B >.  ->  x  =  |^| |^| y )
3332pm4.71ri 392 . . . . . . . . . . 11  |-  ( y  =  <. x ,  B >.  <-> 
( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. ) )
3433anbi1i 458 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
x  =  |^| |^| y  /\  y  =  <. x ,  B >. )  /\  x  e.  A
) )
35 anass 401 . . . . . . . . . 10  |-  ( ( ( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. )  /\  x  e.  A
)  <->  ( x  = 
|^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3634, 35bitri 184 . . . . . . . . 9  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3724, 28, 363bitri 206 . . . . . . . 8  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3837exbii 1605 . . . . . . 7  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
395, 38bitri 184 . . . . . 6  |-  ( y  e.  ( A  X.  { B } )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
40 opeq1 3776 . . . . . . . . 9  |-  ( x  =  |^| |^| y  -> 
<. x ,  B >.  = 
<. |^| |^| y ,  B >. )
4140eqeq2d 2189 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( y  =  <. x ,  B >.  <->  y  =  <. |^| |^| y ,  B >. ) )
42 eleq1 2240 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( x  e.  A  <->  |^|
|^| y  e.  A
) )
4341, 42anbi12d 473 . . . . . . 7  |-  ( x  =  |^| |^| y  ->  ( ( y  = 
<. x ,  B >.  /\  x  e.  A )  <-> 
( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4443ceqsexgv 2866 . . . . . 6  |-  ( |^| |^| y  e.  _V  ->  ( E. x ( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A ) )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4539, 44bitrid 192 . . . . 5  |-  ( |^| |^| y  e.  _V  ->  ( y  e.  ( A  X.  { B }
)  <->  ( y  = 
<. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4618, 45syl 14 . . . 4  |-  ( x  =  |^| |^| y  ->  ( y  e.  ( A  X.  { B } )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4746pm5.32ri 455 . . 3  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
4832adantr 276 . . . . 5  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  ->  x  =  |^| |^| y )
4948pm4.71i 391 . . . 4  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y ) )
5043pm5.32ri 455 . . . 4  |-  ( ( ( y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
5149, 50bitr2i 185 . . 3  |-  ( ( ( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
)  /\  x  =  |^| |^| y )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
52 ancom 266 . . 3  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
5347, 51, 523bitri 206 . 2  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
544, 1, 15, 17, 53en2i 6764 1  |-  ( A  X.  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   {csn 3591   <.cop 3594   |^|cint 3842   class class class wbr 4000    X. cxp 4621    ~~ cen 6732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-en 6735
This theorem is referenced by:  xpsneng  6816  endisj  6818
  Copyright terms: Public domain W3C validator