![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqvisset | GIF version |
Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2639 and issetri 2642. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2636 | . 2 ⊢ 𝑥 ∈ V | |
2 | eleq1 2157 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
3 | 1, 2 | mpbii 147 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 Vcvv 2633 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-v 2635 |
This theorem is referenced by: elxp5 4953 xpsnen 6617 |
Copyright terms: Public domain | W3C validator |