| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvisset | GIF version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2806 and issetri 2809. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eleq1 2292 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 3 | 1, 2 | mpbii 148 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elxp5 5216 xpsnen 6976 fival 7133 |
| Copyright terms: Public domain | W3C validator |