| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqvisset | GIF version | ||
| Description: A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2780 and issetri 2783. (Contributed by BJ, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | eleq1 2269 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 3 | 1, 2 | mpbii 148 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: elxp5 5180 xpsnen 6931 fival 7087 |
| Copyright terms: Public domain | W3C validator |