ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euanv Unicode version

Theorem euanv 2063
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem euanv
StepHypRef Expression
1 ax-17 1506 . 2  |-  ( ph  ->  A. x ph )
21euan 2062 1  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E!weu 2006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by:  eueq2dc  2885  fsn  5638
  Copyright terms: Public domain W3C validator