ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euanv Unicode version

Theorem euanv 2135
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem euanv
StepHypRef Expression
1 ax-17 1572 . 2  |-  ( ph  ->  A. x ph )
21euan 2134 1  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  eueq2dc  2976  fsn  5807
  Copyright terms: Public domain W3C validator