| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq2dc | Unicode version | ||
| Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueq2dc.1 |
|
| eueq2dc.2 |
|
| Ref | Expression |
|---|---|
| eueq2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 837 |
. 2
| |
| 2 | notnot 630 |
. . . . 5
| |
| 3 | eueq2dc.1 |
. . . . . . 7
| |
| 4 | 3 | eueq1 2945 |
. . . . . 6
|
| 5 | euanv 2111 |
. . . . . . 7
| |
| 6 | 5 | biimpri 133 |
. . . . . 6
|
| 7 | 4, 6 | mpan2 425 |
. . . . 5
|
| 8 | euorv 2081 |
. . . . 5
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | orcom 730 |
. . . . . 6
| |
| 11 | 2 | bianfd 951 |
. . . . . . 7
|
| 12 | 11 | orbi2d 792 |
. . . . . 6
|
| 13 | 10, 12 | bitrid 192 |
. . . . 5
|
| 14 | 13 | eubidv 2062 |
. . . 4
|
| 15 | 9, 14 | mpbid 147 |
. . 3
|
| 16 | eueq2dc.2 |
. . . . . . 7
| |
| 17 | 16 | eueq1 2945 |
. . . . . 6
|
| 18 | euanv 2111 |
. . . . . . 7
| |
| 19 | 18 | biimpri 133 |
. . . . . 6
|
| 20 | 17, 19 | mpan2 425 |
. . . . 5
|
| 21 | euorv 2081 |
. . . . 5
| |
| 22 | 20, 21 | mpdan 421 |
. . . 4
|
| 23 | id 19 |
. . . . . . 7
| |
| 24 | 23 | bianfd 951 |
. . . . . 6
|
| 25 | 24 | orbi1d 793 |
. . . . 5
|
| 26 | 25 | eubidv 2062 |
. . . 4
|
| 27 | 22, 26 | mpbid 147 |
. . 3
|
| 28 | 15, 27 | jaoi 718 |
. 2
|
| 29 | 1, 28 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |