Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eueq2dc | Unicode version |
Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueq2dc.1 | |
eueq2dc.2 |
Ref | Expression |
---|---|
eueq2dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 830 | . 2 DECID | |
2 | notnot 624 | . . . . 5 | |
3 | eueq2dc.1 | . . . . . . 7 | |
4 | 3 | eueq1 2902 | . . . . . 6 |
5 | euanv 2076 | . . . . . . 7 | |
6 | 5 | biimpri 132 | . . . . . 6 |
7 | 4, 6 | mpan2 423 | . . . . 5 |
8 | euorv 2046 | . . . . 5 | |
9 | 2, 7, 8 | syl2anc 409 | . . . 4 |
10 | orcom 723 | . . . . . 6 | |
11 | 2 | bianfd 943 | . . . . . . 7 |
12 | 11 | orbi2d 785 | . . . . . 6 |
13 | 10, 12 | syl5bb 191 | . . . . 5 |
14 | 13 | eubidv 2027 | . . . 4 |
15 | 9, 14 | mpbid 146 | . . 3 |
16 | eueq2dc.2 | . . . . . . 7 | |
17 | 16 | eueq1 2902 | . . . . . 6 |
18 | euanv 2076 | . . . . . . 7 | |
19 | 18 | biimpri 132 | . . . . . 6 |
20 | 17, 19 | mpan2 423 | . . . . 5 |
21 | euorv 2046 | . . . . 5 | |
22 | 20, 21 | mpdan 419 | . . . 4 |
23 | id 19 | . . . . . . 7 | |
24 | 23 | bianfd 943 | . . . . . 6 |
25 | 24 | orbi1d 786 | . . . . 5 |
26 | 25 | eubidv 2027 | . . . 4 |
27 | 22, 26 | mpbid 146 | . . 3 |
28 | 15, 27 | jaoi 711 | . 2 |
29 | 1, 28 | sylbi 120 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 weu 2019 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |