| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eueq2dc | Unicode version | ||
| Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| eueq2dc.1 | 
 | 
| eueq2dc.2 | 
 | 
| Ref | Expression | 
|---|---|
| eueq2dc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dc 836 | 
. 2
 | |
| 2 | notnot 630 | 
. . . . 5
 | |
| 3 | eueq2dc.1 | 
. . . . . . 7
 | |
| 4 | 3 | eueq1 2936 | 
. . . . . 6
 | 
| 5 | euanv 2102 | 
. . . . . . 7
 | |
| 6 | 5 | biimpri 133 | 
. . . . . 6
 | 
| 7 | 4, 6 | mpan2 425 | 
. . . . 5
 | 
| 8 | euorv 2072 | 
. . . . 5
 | |
| 9 | 2, 7, 8 | syl2anc 411 | 
. . . 4
 | 
| 10 | orcom 729 | 
. . . . . 6
 | |
| 11 | 2 | bianfd 950 | 
. . . . . . 7
 | 
| 12 | 11 | orbi2d 791 | 
. . . . . 6
 | 
| 13 | 10, 12 | bitrid 192 | 
. . . . 5
 | 
| 14 | 13 | eubidv 2053 | 
. . . 4
 | 
| 15 | 9, 14 | mpbid 147 | 
. . 3
 | 
| 16 | eueq2dc.2 | 
. . . . . . 7
 | |
| 17 | 16 | eueq1 2936 | 
. . . . . 6
 | 
| 18 | euanv 2102 | 
. . . . . . 7
 | |
| 19 | 18 | biimpri 133 | 
. . . . . 6
 | 
| 20 | 17, 19 | mpan2 425 | 
. . . . 5
 | 
| 21 | euorv 2072 | 
. . . . 5
 | |
| 22 | 20, 21 | mpdan 421 | 
. . . 4
 | 
| 23 | id 19 | 
. . . . . . 7
 | |
| 24 | 23 | bianfd 950 | 
. . . . . 6
 | 
| 25 | 24 | orbi1d 792 | 
. . . . 5
 | 
| 26 | 25 | eubidv 2053 | 
. . . 4
 | 
| 27 | 22, 26 | mpbid 147 | 
. . 3
 | 
| 28 | 15, 27 | jaoi 717 | 
. 2
 | 
| 29 | 1, 28 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |