ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euanv GIF version

Theorem euanv 2112
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem euanv
StepHypRef Expression
1 ax-17 1550 . 2 (𝜑 → ∀𝑥𝜑)
21euan 2111 1 (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  eueq2dc  2950  fsn  5765
  Copyright terms: Public domain W3C validator