ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euanv GIF version

Theorem euanv 2076
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem euanv
StepHypRef Expression
1 ax-17 1519 . 2 (𝜑 → ∀𝑥𝜑)
21euan 2075 1 (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  ∃!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  eueq2dc  2903  fsn  5668
  Copyright terms: Public domain W3C validator