| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubidv | Unicode version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubidv.1 |
|
| Ref | Expression |
|---|---|
| eubidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | eubidv.1 |
. 2
| |
| 3 | 1, 2 | eubid 2052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 |
| This theorem is referenced by: eubii 2054 eueq2dc 2937 eueq3dc 2938 reuhypd 4506 feu 5440 funfveu 5571 dff4im 5708 acexmid 5921 upxp 14508 dedekindicc 14869 |
| Copyright terms: Public domain | W3C validator |