| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubidv | Unicode version | ||
| Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubidv.1 |
|
| Ref | Expression |
|---|---|
| eubidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | eubidv.1 |
. 2
| |
| 3 | 1, 2 | eubid 2062 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: eubii 2064 eueq2dc 2950 eueq3dc 2951 reuhypd 4526 feu 5470 funfveu 5602 dff4im 5739 acexmid 5956 upxp 14819 dedekindicc 15180 |
| Copyright terms: Public domain | W3C validator |