Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubidv | Unicode version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubidv.1 |
Ref | Expression |
---|---|
eubidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | eubidv.1 | . 2 | |
3 | 1, 2 | eubid 2026 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-eu 2022 |
This theorem is referenced by: eubii 2028 eueq2dc 2903 eueq3dc 2904 reuhypd 4456 feu 5380 funfveu 5509 dff4im 5642 acexmid 5852 upxp 13066 dedekindicc 13405 |
Copyright terms: Public domain | W3C validator |