ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubidv Unicode version

Theorem eubidv 2034
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
eubidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
eubidv  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem eubidv
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
2 eubidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2eubid 2033 1  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-eu 2029
This theorem is referenced by:  eubii  2035  eueq2dc  2912  eueq3dc  2913  reuhypd  4473  feu  5400  funfveu  5530  dff4im  5664  acexmid  5876  upxp  13857  dedekindicc  14196
  Copyright terms: Public domain W3C validator