![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eubidv | Unicode version |
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eubidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | eubidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eubid 2049 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-eu 2045 |
This theorem is referenced by: eubii 2051 eueq2dc 2934 eueq3dc 2935 reuhypd 4503 feu 5437 funfveu 5568 dff4im 5705 acexmid 5918 upxp 14451 dedekindicc 14812 |
Copyright terms: Public domain | W3C validator |