ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubidv Unicode version

Theorem eubidv 2022
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypothesis
Ref Expression
eubidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
eubidv  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem eubidv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ph
2 eubidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2eubid 2021 1  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017
This theorem is referenced by:  eubii  2023  eueq2dc  2899  eueq3dc  2900  reuhypd  4449  feu  5370  funfveu  5499  dff4im  5631  acexmid  5841  upxp  12912  dedekindicc  13251
  Copyright terms: Public domain W3C validator