Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eueq1 | Unicode version |
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueq1.1 |
Ref | Expression |
---|---|
eueq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq1.1 | . 2 | |
2 | eueq 2906 | . 2 | |
3 | 1, 2 | mpbi 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 weu 2024 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: eueq2dc 2908 eueq3dc 2909 fsn 5680 |
Copyright terms: Public domain | W3C validator |