ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq1 Unicode version

Theorem eueq1 2975
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueq1.1  |-  A  e. 
_V
Assertion
Ref Expression
eueq1  |-  E! x  x  =  A
Distinct variable group:    x, A

Proof of Theorem eueq1
StepHypRef Expression
1 eueq1.1 . 2  |-  A  e. 
_V
2 eueq 2974 . 2  |-  ( A  e.  _V  <->  E! x  x  =  A )
31, 2mpbi 145 1  |-  E! x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E!weu 2077    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  eueq2dc  2976  eueq3dc  2977  fsn  5807
  Copyright terms: Public domain W3C validator