ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq1 Unicode version

Theorem eueq1 2945
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueq1.1  |-  A  e. 
_V
Assertion
Ref Expression
eueq1  |-  E! x  x  =  A
Distinct variable group:    x, A

Proof of Theorem eueq1
StepHypRef Expression
1 eueq1.1 . 2  |-  A  e. 
_V
2 eueq 2944 . 2  |-  ( A  e.  _V  <->  E! x  x  =  A )
31, 2mpbi 145 1  |-  E! x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E!weu 2054    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  eueq2dc  2946  eueq3dc  2947  fsn  5754
  Copyright terms: Public domain W3C validator