ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq1 Unicode version

Theorem eueq1 2932
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueq1.1  |-  A  e. 
_V
Assertion
Ref Expression
eueq1  |-  E! x  x  =  A
Distinct variable group:    x, A

Proof of Theorem eueq1
StepHypRef Expression
1 eueq1.1 . 2  |-  A  e. 
_V
2 eueq 2931 . 2  |-  ( A  e.  _V  <->  E! x  x  =  A )
31, 2mpbi 145 1  |-  E! x  x  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E!weu 2042    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  eueq2dc  2933  eueq3dc  2934  fsn  5730
  Copyright terms: Public domain W3C validator