ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq1 GIF version

Theorem eueq1 2945
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueq1.1 𝐴 ∈ V
Assertion
Ref Expression
eueq1 ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq1
StepHypRef Expression
1 eueq1.1 . 2 𝐴 ∈ V
2 eueq 2944 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 145 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ∃!weu 2054  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  eueq2dc  2946  eueq3dc  2947  fsn  5752
  Copyright terms: Public domain W3C validator