Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eueq1 | GIF version |
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueq1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eueq1 | ⊢ ∃!𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eueq 2897 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∃!weu 2014 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: eueq2dc 2899 eueq3dc 2900 fsn 5657 |
Copyright terms: Public domain | W3C validator |