![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eueq1 | GIF version |
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
eueq1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eueq1 | ⊢ ∃!𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eueq1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eueq 2931 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃!weu 2042 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: eueq2dc 2933 eueq3dc 2934 fsn 5730 |
Copyright terms: Public domain | W3C validator |