| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq1 | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueq1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eueq1 | ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eueq 2944 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃!weu 2054 ∈ wcel 2176 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: eueq2dc 2946 eueq3dc 2947 fsn 5752 |
| Copyright terms: Public domain | W3C validator |