ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq1 GIF version

Theorem eueq1 2902
Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.)
Hypothesis
Ref Expression
eueq1.1 𝐴 ∈ V
Assertion
Ref Expression
eueq1 ∃!𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq1
StepHypRef Expression
1 eueq1.1 . 2 𝐴 ∈ V
2 eueq 2901 . 2 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
31, 2mpbi 144 1 ∃!𝑥 𝑥 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  ∃!weu 2019  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  eueq2dc  2903  eueq3dc  2904  fsn  5668
  Copyright terms: Public domain W3C validator