| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq1 | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueq1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eueq1 | ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eueq 2935 | . 2 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ∃!𝑥 𝑥 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: eueq2dc 2937 eueq3dc 2938 fsn 5734 |
| Copyright terms: Public domain | W3C validator |