Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eueq | Unicode version |
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
eueq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2185 | . . . 4 | |
2 | 1 | gen2 1438 | . . 3 |
3 | 2 | biantru 300 | . 2 |
4 | isset 2732 | . 2 | |
5 | eqeq1 2172 | . . 3 | |
6 | 5 | eu4 2076 | . 2 |
7 | 3, 4, 6 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: eueq1 2898 moeq 2901 mosubt 2903 reuhypd 4449 mptfng 5313 upxp 12912 |
Copyright terms: Public domain | W3C validator |