ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq Unicode version

Theorem eueq 2944
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq  |-  ( A  e.  _V  <->  E! x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem eueq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2225 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
21gen2 1473 . . 3  |-  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
32biantru 302 . 2  |-  ( E. x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
4 isset 2778 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
5 eqeq1 2212 . . 3  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
65eu4 2116 . 2  |-  ( E! x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
73, 4, 63bitr4i 212 1  |-  ( A  e.  _V  <->  E! x  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  eueq1  2945  moeq  2948  mosubt  2950  reuhypd  4519  mptfng  5403  gsum0g  13261  gsumval2  13262  upxp  14777
  Copyright terms: Public domain W3C validator