ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq Unicode version

Theorem eueq 2897
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq  |-  ( A  e.  _V  <->  E! x  x  =  A )
Distinct variable group:    x, A

Proof of Theorem eueq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2185 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
21gen2 1438 . . 3  |-  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y )
32biantru 300 . 2  |-  ( E. x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
4 isset 2732 . 2  |-  ( A  e.  _V  <->  E. x  x  =  A )
5 eqeq1 2172 . . 3  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
65eu4 2076 . 2  |-  ( E! x  x  =  A  <-> 
( E. x  x  =  A  /\  A. x A. y ( ( x  =  A  /\  y  =  A )  ->  x  =  y ) ) )
73, 4, 63bitr4i 211 1  |-  ( A  e.  _V  <->  E! x  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  eueq1  2898  moeq  2901  mosubt  2903  reuhypd  4449  mptfng  5313  upxp  12912
  Copyright terms: Public domain W3C validator