| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dmmulpq | Unicode version | ||
| Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| dmmulpq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmoprab 6003 | 
. . 3
 | |
| 2 | df-mqqs 7417 | 
. . . 4
 | |
| 3 | 2 | dmeqi 4867 | 
. . 3
 | 
| 4 | dmaddpqlem 7444 | 
. . . . . . . . 9
 | |
| 5 | dmaddpqlem 7444 | 
. . . . . . . . 9
 | |
| 6 | 4, 5 | anim12i 338 | 
. . . . . . . 8
 | 
| 7 | ee4anv 1953 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | sylibr 134 | 
. . . . . . 7
 | 
| 9 | enqex 7427 | 
. . . . . . . . . . . . . 14
 | |
| 10 | ecexg 6596 | 
. . . . . . . . . . . . . 14
 | |
| 11 | 9, 10 | ax-mp 5 | 
. . . . . . . . . . . . 13
 | 
| 12 | 11 | isseti 2771 | 
. . . . . . . . . . . 12
 | 
| 13 | ax-ia3 108 | 
. . . . . . . . . . . . 13
 | |
| 14 | 13 | eximdv 1894 | 
. . . . . . . . . . . 12
 | 
| 15 | 12, 14 | mpi 15 | 
. . . . . . . . . . 11
 | 
| 16 | 15 | 2eximi 1615 | 
. . . . . . . . . 10
 | 
| 17 | exrot3 1704 | 
. . . . . . . . . 10
 | |
| 18 | 16, 17 | sylibr 134 | 
. . . . . . . . 9
 | 
| 19 | 18 | 2eximi 1615 | 
. . . . . . . 8
 | 
| 20 | exrot3 1704 | 
. . . . . . . 8
 | |
| 21 | 19, 20 | sylibr 134 | 
. . . . . . 7
 | 
| 22 | 8, 21 | syl 14 | 
. . . . . 6
 | 
| 23 | 22 | pm4.71i 391 | 
. . . . 5
 | 
| 24 | 19.42v 1921 | 
. . . . 5
 | |
| 25 | 23, 24 | bitr4i 187 | 
. . . 4
 | 
| 26 | 25 | opabbii 4100 | 
. . 3
 | 
| 27 | 1, 3, 26 | 3eqtr4i 2227 | 
. 2
 | 
| 28 | df-xp 4669 | 
. 2
 | |
| 29 | 27, 28 | eqtr4i 2220 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-iom 4627 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-oprab 5926 df-ec 6594 df-qs 6598 df-ni 7371 df-enq 7414 df-nqqs 7415 df-mqqs 7417 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |