Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmulpq | Unicode version |
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
dmmulpq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmoprab 5923 | . . 3 | |
2 | df-mqqs 7291 | . . . 4 | |
3 | 2 | dmeqi 4805 | . . 3 |
4 | dmaddpqlem 7318 | . . . . . . . . 9 | |
5 | dmaddpqlem 7318 | . . . . . . . . 9 | |
6 | 4, 5 | anim12i 336 | . . . . . . . 8 |
7 | ee4anv 1922 | . . . . . . . 8 | |
8 | 6, 7 | sylibr 133 | . . . . . . 7 |
9 | enqex 7301 | . . . . . . . . . . . . . 14 | |
10 | ecexg 6505 | . . . . . . . . . . . . . 14 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . . . . 13 |
12 | 11 | isseti 2734 | . . . . . . . . . . . 12 |
13 | ax-ia3 107 | . . . . . . . . . . . . 13 | |
14 | 13 | eximdv 1868 | . . . . . . . . . . . 12 |
15 | 12, 14 | mpi 15 | . . . . . . . . . . 11 |
16 | 15 | 2eximi 1589 | . . . . . . . . . 10 |
17 | exrot3 1678 | . . . . . . . . . 10 | |
18 | 16, 17 | sylibr 133 | . . . . . . . . 9 |
19 | 18 | 2eximi 1589 | . . . . . . . 8 |
20 | exrot3 1678 | . . . . . . . 8 | |
21 | 19, 20 | sylibr 133 | . . . . . . 7 |
22 | 8, 21 | syl 14 | . . . . . 6 |
23 | 22 | pm4.71i 389 | . . . . 5 |
24 | 19.42v 1894 | . . . . 5 | |
25 | 23, 24 | bitr4i 186 | . . . 4 |
26 | 25 | opabbii 4049 | . . 3 |
27 | 1, 3, 26 | 3eqtr4i 2196 | . 2 |
28 | df-xp 4610 | . 2 | |
29 | 27, 28 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 copab 4042 cxp 4602 cdm 4604 (class class class)co 5842 coprab 5843 cec 6499 cmpq 7218 ceq 7220 cnq 7221 cmq 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-iom 4568 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-oprab 5846 df-ec 6503 df-qs 6507 df-ni 7245 df-enq 7288 df-nqqs 7289 df-mqqs 7291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |