| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmulpq | Unicode version | ||
| Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmmulpq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab 6026 |
. . 3
| |
| 2 | df-mqqs 7463 |
. . . 4
| |
| 3 | 2 | dmeqi 4879 |
. . 3
|
| 4 | dmaddpqlem 7490 |
. . . . . . . . 9
| |
| 5 | dmaddpqlem 7490 |
. . . . . . . . 9
| |
| 6 | 4, 5 | anim12i 338 |
. . . . . . . 8
|
| 7 | ee4anv 1962 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylibr 134 |
. . . . . . 7
|
| 9 | enqex 7473 |
. . . . . . . . . . . . . 14
| |
| 10 | ecexg 6624 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 12 | 11 | isseti 2780 |
. . . . . . . . . . . 12
|
| 13 | ax-ia3 108 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | eximdv 1903 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | mpi 15 |
. . . . . . . . . . 11
|
| 16 | 15 | 2eximi 1624 |
. . . . . . . . . 10
|
| 17 | exrot3 1713 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . . . . 9
|
| 19 | 18 | 2eximi 1624 |
. . . . . . . 8
|
| 20 | exrot3 1713 |
. . . . . . . 8
| |
| 21 | 19, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | 22 | pm4.71i 391 |
. . . . 5
|
| 24 | 19.42v 1930 |
. . . . 5
| |
| 25 | 23, 24 | bitr4i 187 |
. . . 4
|
| 26 | 25 | opabbii 4111 |
. . 3
|
| 27 | 1, 3, 26 | 3eqtr4i 2236 |
. 2
|
| 28 | df-xp 4681 |
. 2
| |
| 29 | 27, 28 | eqtr4i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-iom 4639 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-oprab 5948 df-ec 6622 df-qs 6626 df-ni 7417 df-enq 7460 df-nqqs 7461 df-mqqs 7463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |