| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmulpq | Unicode version | ||
| Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmmulpq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab 6085 |
. . 3
| |
| 2 | df-mqqs 7537 |
. . . 4
| |
| 3 | 2 | dmeqi 4924 |
. . 3
|
| 4 | dmaddpqlem 7564 |
. . . . . . . . 9
| |
| 5 | dmaddpqlem 7564 |
. . . . . . . . 9
| |
| 6 | 4, 5 | anim12i 338 |
. . . . . . . 8
|
| 7 | ee4anv 1985 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylibr 134 |
. . . . . . 7
|
| 9 | enqex 7547 |
. . . . . . . . . . . . . 14
| |
| 10 | ecexg 6684 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 12 | 11 | isseti 2808 |
. . . . . . . . . . . 12
|
| 13 | ax-ia3 108 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | eximdv 1926 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | mpi 15 |
. . . . . . . . . . 11
|
| 16 | 15 | 2eximi 1647 |
. . . . . . . . . 10
|
| 17 | exrot3 1736 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . . . . 9
|
| 19 | 18 | 2eximi 1647 |
. . . . . . . 8
|
| 20 | exrot3 1736 |
. . . . . . . 8
| |
| 21 | 19, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | 22 | pm4.71i 391 |
. . . . 5
|
| 24 | 19.42v 1953 |
. . . . 5
| |
| 25 | 23, 24 | bitr4i 187 |
. . . 4
|
| 26 | 25 | opabbii 4151 |
. . 3
|
| 27 | 1, 3, 26 | 3eqtr4i 2260 |
. 2
|
| 28 | df-xp 4725 |
. 2
| |
| 29 | 27, 28 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-iom 4683 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-oprab 6005 df-ec 6682 df-qs 6686 df-ni 7491 df-enq 7534 df-nqqs 7535 df-mqqs 7537 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |