ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpq Unicode version

Theorem dmmulpq 7379
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmmulpq  |-  dom  .Q  =  ( Q.  X.  Q. )

Proof of Theorem dmmulpq
Dummy variables  x  y  z  v  w  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5956 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
2 df-mqqs 7349 . . . 4  |-  .Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
32dmeqi 4829 . . 3  |-  dom  .Q  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
4 dmaddpqlem 7376 . . . . . . . . 9  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
5 dmaddpqlem 7376 . . . . . . . . 9  |-  ( y  e.  Q.  ->  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  )
64, 5anim12i 338 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
7 ee4anv 1934 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) 
<->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
86, 7sylibr 134 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) )
9 enqex 7359 . . . . . . . . . . . . . 14  |-  ~Q  e.  _V
10 ecexg 6539 . . . . . . . . . . . . . 14  |-  (  ~Q  e.  _V  ->  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  e.  _V )
119, 10ax-mp 5 . . . . . . . . . . . . 13  |-  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  e.  _V
1211isseti 2746 . . . . . . . . . . . 12  |-  E. z 
z  =  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q
13 ax-ia3 108 . . . . . . . . . . . . 13  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f >. ) ]  ~Q  ->  ( (
x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1413eximdv 1880 . . . . . . . . . . . 12  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( E. z 
z  =  [ (
<. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1512, 14mpi 15 . . . . . . . . . . 11  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
16152eximi 1601 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
17 exrot3 1690 . . . . . . . . . 10  |-  ( E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
1816, 17sylibr 134 . . . . . . . . 9  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
19182eximi 1601 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
20 exrot3 1690 . . . . . . . 8  |-  ( E. z E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
2119, 20sylibr 134 . . . . . . 7  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
228, 21syl 14 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)
2322pm4.71i 391 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
24 19.42v 1906 . . . . 5  |-  ( E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
)  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2523, 24bitr4i 187 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2625opabbii 4071 . . 3  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q. ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  .pQ  <. u ,  f
>. ) ]  ~Q  )
) }
271, 3, 263eqtr4i 2208 . 2  |-  dom  .Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q. ) }
28 df-xp 4633 . 2  |-  ( Q. 
X.  Q. )  =  { <. x ,  y >.  |  ( x  e. 
Q.  /\  y  e.  Q. ) }
2927, 28eqtr4i 2201 1  |-  dom  .Q  =  ( Q.  X.  Q. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2738   <.cop 3596   {copab 4064    X. cxp 4625   dom cdm 4627  (class class class)co 5875   {coprab 5876   [cec 6533    .pQ cmpq 7276    ~Q ceq 7278   Q.cnq 7279    .Q cmq 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-iom 4591  df-xp 4633  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-oprab 5879  df-ec 6537  df-qs 6541  df-ni 7303  df-enq 7346  df-nqqs 7347  df-mqqs 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator