ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab Unicode version

Theorem rnoprab 5925
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem rnoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5889 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21rneqi 4832 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  ran  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 rnopab 4851 . 2  |-  ran  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
z  |  E. w E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1678 . . . 4  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. w ( w  =  <. x ,  y >.  /\  ph ) )
5 vex 2729 . . . . . . . 8  |-  x  e. 
_V
6 vex 2729 . . . . . . . 8  |-  y  e. 
_V
75, 6opex 4207 . . . . . . 7  |-  <. x ,  y >.  e.  _V
87isseti 2734 . . . . . 6  |-  E. w  w  =  <. x ,  y >.
9 19.41v 1890 . . . . . 6  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. w  w  =  <. x ,  y >.  /\  ph ) )
108, 9mpbiran 930 . . . . 5  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ph )
11102exbii 1594 . . . 4  |-  ( E. x E. y E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
124, 11bitri 183 . . 3  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
1312abbii 2282 . 2  |-  { z  |  E. w E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { z  |  E. x E. y ph }
142, 3, 133eqtri 2190 1  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480   {cab 2151   <.cop 3579   {copab 4042   ran crn 4605   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-oprab 5846
This theorem is referenced by:  rnoprab2  5926
  Copyright terms: Public domain W3C validator