Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnoprab | Unicode version |
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
Ref | Expression |
---|---|
rnoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 5889 | . . 3 | |
2 | 1 | rneqi 4832 | . 2 |
3 | rnopab 4851 | . 2 | |
4 | exrot3 1678 | . . . 4 | |
5 | vex 2729 | . . . . . . . 8 | |
6 | vex 2729 | . . . . . . . 8 | |
7 | 5, 6 | opex 4207 | . . . . . . 7 |
8 | 7 | isseti 2734 | . . . . . 6 |
9 | 19.41v 1890 | . . . . . 6 | |
10 | 8, 9 | mpbiran 930 | . . . . 5 |
11 | 10 | 2exbii 1594 | . . . 4 |
12 | 4, 11 | bitri 183 | . . 3 |
13 | 12 | abbii 2282 | . 2 |
14 | 2, 3, 13 | 3eqtri 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 cab 2151 cop 3579 copab 4042 crn 4605 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-oprab 5846 |
This theorem is referenced by: rnoprab2 5926 |
Copyright terms: Public domain | W3C validator |