ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab Unicode version

Theorem rnoprab 5847
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem rnoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5811 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21rneqi 4762 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  ran  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 rnopab 4781 . 2  |-  ran  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
z  |  E. w E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1668 . . . 4  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. w ( w  =  <. x ,  y >.  /\  ph ) )
5 vex 2684 . . . . . . . 8  |-  x  e. 
_V
6 vex 2684 . . . . . . . 8  |-  y  e. 
_V
75, 6opex 4146 . . . . . . 7  |-  <. x ,  y >.  e.  _V
87isseti 2689 . . . . . 6  |-  E. w  w  =  <. x ,  y >.
9 19.41v 1874 . . . . . 6  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. w  w  =  <. x ,  y >.  /\  ph ) )
108, 9mpbiran 924 . . . . 5  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ph )
11102exbii 1585 . . . 4  |-  ( E. x E. y E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
124, 11bitri 183 . . 3  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
1312abbii 2253 . 2  |-  { z  |  E. w E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { z  |  E. x E. y ph }
142, 3, 133eqtri 2162 1  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468   {cab 2123   <.cop 3525   {copab 3983   ran crn 4535   {coprab 5768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-cnv 4542  df-dm 4544  df-rn 4545  df-oprab 5771
This theorem is referenced by:  rnoprab2  5848
  Copyright terms: Public domain W3C validator