ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpq Unicode version

Theorem dmaddpq 7392
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
dmaddpq  |-  dom  +Q  =  ( Q.  X.  Q. )

Proof of Theorem dmaddpq
Dummy variables  x  y  z  v  w  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 5969 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
2 df-plqqs 7362 . . . 4  |-  +Q  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
32dmeqi 4840 . . 3  |-  dom  +Q  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
4 dmaddpqlem 7390 . . . . . . . . 9  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
5 dmaddpqlem 7390 . . . . . . . . 9  |-  ( y  e.  Q.  ->  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  )
64, 5anim12i 338 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
7 ee4anv 1944 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) 
<->  ( E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  /\  E. u E. f  y  =  [ <. u ,  f
>. ]  ~Q  ) )
86, 7sylibr 134 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  ) )
9 enqex 7373 . . . . . . . . . . . . . 14  |-  ~Q  e.  _V
10 ecexg 6553 . . . . . . . . . . . . . 14  |-  (  ~Q  e.  _V  ->  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  e.  _V )
119, 10ax-mp 5 . . . . . . . . . . . . 13  |-  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  e.  _V
1211isseti 2757 . . . . . . . . . . . 12  |-  E. z 
z  =  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q
13 ax-ia3 108 . . . . . . . . . . . . 13  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f >. ) ]  ~Q  ->  ( (
x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1413eximdv 1890 . . . . . . . . . . . 12  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  ( E. z 
z  =  [ (
<. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
1512, 14mpi 15 . . . . . . . . . . 11  |-  ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
16152eximi 1611 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
17 exrot3 1700 . . . . . . . . . 10  |-  ( E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. u E. f E. z ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
1816, 17sylibr 134 . . . . . . . . 9  |-  ( E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
19182eximi 1611 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
20 exrot3 1700 . . . . . . . 8  |-  ( E. z E. w E. v E. u E. f
( ( x  =  [ <. w ,  v
>. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )  <->  E. w E. v E. z E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
2119, 20sylibr 134 . . . . . . 7  |-  ( E. w E. v E. u E. f ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
228, 21syl 14 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)
2322pm4.71i 391 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
24 19.42v 1916 . . . . 5  |-  ( E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
)  <->  ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f
>. ]  ~Q  )  /\  z  =  [ ( <. w ,  v >.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2523, 24bitr4i 187 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  <->  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) )
2625opabbii 4082 . . 3  |-  { <. x ,  y >.  |  ( x  e.  Q.  /\  y  e.  Q. ) }  =  { <. x ,  y >.  |  E. z ( ( x  e.  Q.  /\  y  e.  Q. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~Q  /\  y  =  [ <. u ,  f >. ]  ~Q  )  /\  z  =  [
( <. w ,  v
>.  +pQ  <. u ,  f
>. ) ]  ~Q  )
) }
271, 3, 263eqtr4i 2218 . 2  |-  dom  +Q  =  { <. x ,  y
>.  |  ( x  e.  Q.  /\  y  e. 
Q. ) }
28 df-xp 4644 . 2  |-  ( Q. 
X.  Q. )  =  { <. x ,  y >.  |  ( x  e. 
Q.  /\  y  e.  Q. ) }
2927, 28eqtr4i 2211 1  |-  dom  +Q  =  ( Q.  X.  Q. )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1363   E.wex 1502    e. wcel 2158   _Vcvv 2749   <.cop 3607   {copab 4075    X. cxp 4636   dom cdm 4638  (class class class)co 5888   {coprab 5889   [cec 6547    +pQ cplpq 7289    ~Q ceq 7292   Q.cnq 7293    +Q cplq 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-iom 4602  df-xp 4644  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-oprab 5892  df-ec 6551  df-qs 6555  df-ni 7317  df-enq 7360  df-nqqs 7361  df-plqqs 7362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator