| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmaddpq | Unicode version | ||
| Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmaddpq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab 6007 |
. . 3
| |
| 2 | df-plqqs 7433 |
. . . 4
| |
| 3 | 2 | dmeqi 4868 |
. . 3
|
| 4 | dmaddpqlem 7461 |
. . . . . . . . 9
| |
| 5 | dmaddpqlem 7461 |
. . . . . . . . 9
| |
| 6 | 4, 5 | anim12i 338 |
. . . . . . . 8
|
| 7 | ee4anv 1953 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylibr 134 |
. . . . . . 7
|
| 9 | enqex 7444 |
. . . . . . . . . . . . . 14
| |
| 10 | ecexg 6605 |
. . . . . . . . . . . . . 14
| |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 12 | 11 | isseti 2771 |
. . . . . . . . . . . 12
|
| 13 | ax-ia3 108 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | eximdv 1894 |
. . . . . . . . . . . 12
|
| 15 | 12, 14 | mpi 15 |
. . . . . . . . . . 11
|
| 16 | 15 | 2eximi 1615 |
. . . . . . . . . 10
|
| 17 | exrot3 1704 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | sylibr 134 |
. . . . . . . . 9
|
| 19 | 18 | 2eximi 1615 |
. . . . . . . 8
|
| 20 | exrot3 1704 |
. . . . . . . 8
| |
| 21 | 19, 20 | sylibr 134 |
. . . . . . 7
|
| 22 | 8, 21 | syl 14 |
. . . . . 6
|
| 23 | 22 | pm4.71i 391 |
. . . . 5
|
| 24 | 19.42v 1921 |
. . . . 5
| |
| 25 | 23, 24 | bitr4i 187 |
. . . 4
|
| 26 | 25 | opabbii 4101 |
. . 3
|
| 27 | 1, 3, 26 | 3eqtr4i 2227 |
. 2
|
| 28 | df-xp 4670 |
. 2
| |
| 29 | 27, 28 | eqtr4i 2220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-iom 4628 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-oprab 5929 df-ec 6603 df-qs 6607 df-ni 7388 df-enq 7431 df-nqqs 7432 df-plqqs 7433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |