ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvoprab Unicode version

Theorem cnvoprab 6202
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
cnvoprab.x  |-  F/ x ps
cnvoprab.y  |-  F/ y ps
cnvoprab.1  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
cnvoprab.2  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
Assertion
Ref Expression
cnvoprab  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Distinct variable groups:    x, a, y, z    ph, a
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z, a)

Proof of Theorem cnvoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 excom 1652 . . . . . 6  |-  ( E. a E. z ( w  =  <. a ,  z >.  /\  ps ) 
<->  E. z E. a
( w  =  <. a ,  z >.  /\  ps ) )
2 nfv 1516 . . . . . . . . . . 11  |-  F/ x  w  =  <. a ,  z >.
3 cnvoprab.x . . . . . . . . . . 11  |-  F/ x ps
42, 3nfan 1553 . . . . . . . . . 10  |-  F/ x
( w  =  <. a ,  z >.  /\  ps )
54nfex 1625 . . . . . . . . 9  |-  F/ x E. a ( w  = 
<. a ,  z >.  /\  ps )
6 nfv 1516 . . . . . . . . . . . 12  |-  F/ y  w  =  <. a ,  z >.
7 cnvoprab.y . . . . . . . . . . . 12  |-  F/ y ps
86, 7nfan 1553 . . . . . . . . . . 11  |-  F/ y ( w  =  <. a ,  z >.  /\  ps )
98nfex 1625 . . . . . . . . . 10  |-  F/ y E. a ( w  =  <. a ,  z
>.  /\  ps )
10 vex 2729 . . . . . . . . . . . 12  |-  x  e. 
_V
11 vex 2729 . . . . . . . . . . . 12  |-  y  e. 
_V
1210, 11opex 4207 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
13 opeq1 3758 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  <. a ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
1413eqeq2d 2177 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( w  = 
<. a ,  z >.  <->  w  =  <. <. x ,  y
>. ,  z >. ) )
15 cnvoprab.1 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
1614, 15anbi12d 465 . . . . . . . . . . 11  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  <->  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) ) )
1712, 16spcev 2821 . . . . . . . . . 10  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
189, 17exlimi 1582 . . . . . . . . 9  |-  ( E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
195, 18exlimi 1582 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
20 cnvoprab.2 . . . . . . . . . . 11  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
2120adantl 275 . . . . . . . . . 10  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  a  e.  ( _V  X.  _V )
)
22 vex 2729 . . . . . . . . . . . 12  |-  a  e. 
_V
23 1stexg 6135 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
2422, 23ax-mp 5 . . . . . . . . . . 11  |-  ( 1st `  a )  e.  _V
25 2ndexg 6136 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2622, 25ax-mp 5 . . . . . . . . . . 11  |-  ( 2nd `  a )  e.  _V
27 eqcom 2167 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  a )  =  x  <->  x  =  ( 1st `  a ) )
28 eqcom 2167 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  a )  =  y  <->  y  =  ( 2nd `  a ) )
2927, 28anbi12i 456 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y )  <->  ( x  =  ( 1st `  a
)  /\  y  =  ( 2nd `  a ) ) )
30 eqopi 6140 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y ) )  ->  a  =  <. x ,  y >. )
3129, 30sylan2br 286 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
a  =  <. x ,  y >. )
3216bicomd 140 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
3331, 32syl 14 . . . . . . . . . . . 12  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
344, 8, 33spc2ed 6201 . . . . . . . . . . 11  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  _V  /\  ( 2nd `  a )  e.  _V ) )  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  ->  E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) ) )
3524, 26, 34mpanr12 436 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) ) )
3621, 35mpcom 36 . . . . . . . . 9  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
3736exlimiv 1586 . . . . . . . 8  |-  ( E. a ( w  = 
<. a ,  z >.  /\  ps )  ->  E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3819, 37impbii 125 . . . . . . 7  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
3938exbii 1593 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. a ( w  = 
<. a ,  z >.  /\  ps ) )
40 exrot3 1678 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
411, 39, 403bitr2ri 208 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. a E. z ( w  = 
<. a ,  z >.  /\  ps ) )
4241abbii 2282 . . . 4  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { w  |  E. a E. z ( w  =  <. a ,  z
>.  /\  ps ) }
43 df-oprab 5846 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
44 df-opab 4044 . . . 4  |-  { <. a ,  z >.  |  ps }  =  { w  |  E. a E. z
( w  =  <. a ,  z >.  /\  ps ) }
4542, 43, 443eqtr4ri 2197 . . 3  |-  { <. a ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z
>.  |  ph }
4645cnveqi 4779 . 2  |-  `' { <. a ,  z >.  |  ps }  =  `' { <. <. x ,  y
>. ,  z >.  | 
ph }
47 cnvopab 5005 . 2  |-  `' { <. a ,  z >.  |  ps }  =  { <. z ,  a >.  |  ps }
4846, 47eqtr3i 2188 1  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   {cab 2151   _Vcvv 2726   <.cop 3579   {copab 4042    X. cxp 4602   `'ccnv 4603   ` cfv 5188   {coprab 5843   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-oprab 5846  df-1st 6108  df-2nd 6109
This theorem is referenced by:  f1od2  6203
  Copyright terms: Public domain W3C validator