ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvoprab Unicode version

Theorem cnvoprab 6301
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
cnvoprab.x  |-  F/ x ps
cnvoprab.y  |-  F/ y ps
cnvoprab.1  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
cnvoprab.2  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
Assertion
Ref Expression
cnvoprab  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Distinct variable groups:    x, a, y, z    ph, a
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z, a)

Proof of Theorem cnvoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 excom 1678 . . . . . 6  |-  ( E. a E. z ( w  =  <. a ,  z >.  /\  ps ) 
<->  E. z E. a
( w  =  <. a ,  z >.  /\  ps ) )
2 nfv 1542 . . . . . . . . . . 11  |-  F/ x  w  =  <. a ,  z >.
3 cnvoprab.x . . . . . . . . . . 11  |-  F/ x ps
42, 3nfan 1579 . . . . . . . . . 10  |-  F/ x
( w  =  <. a ,  z >.  /\  ps )
54nfex 1651 . . . . . . . . 9  |-  F/ x E. a ( w  = 
<. a ,  z >.  /\  ps )
6 nfv 1542 . . . . . . . . . . . 12  |-  F/ y  w  =  <. a ,  z >.
7 cnvoprab.y . . . . . . . . . . . 12  |-  F/ y ps
86, 7nfan 1579 . . . . . . . . . . 11  |-  F/ y ( w  =  <. a ,  z >.  /\  ps )
98nfex 1651 . . . . . . . . . 10  |-  F/ y E. a ( w  =  <. a ,  z
>.  /\  ps )
10 vex 2766 . . . . . . . . . . . 12  |-  x  e. 
_V
11 vex 2766 . . . . . . . . . . . 12  |-  y  e. 
_V
1210, 11opex 4263 . . . . . . . . . . 11  |-  <. x ,  y >.  e.  _V
13 opeq1 3809 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  <. a ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
1413eqeq2d 2208 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( w  = 
<. a ,  z >.  <->  w  =  <. <. x ,  y
>. ,  z >. ) )
15 cnvoprab.1 . . . . . . . . . . . 12  |-  ( a  =  <. x ,  y
>.  ->  ( ps  <->  ph ) )
1614, 15anbi12d 473 . . . . . . . . . . 11  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  <->  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph ) ) )
1712, 16spcev 2859 . . . . . . . . . 10  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
189, 17exlimi 1608 . . . . . . . . 9  |-  ( E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  ->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
195, 18exlimi 1608 . . . . . . . 8  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  ->  E. a ( w  = 
<. a ,  z >.  /\  ps ) )
20 cnvoprab.2 . . . . . . . . . . 11  |-  ( ps 
->  a  e.  ( _V  X.  _V ) )
2120adantl 277 . . . . . . . . . 10  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  a  e.  ( _V  X.  _V )
)
22 vex 2766 . . . . . . . . . . . 12  |-  a  e. 
_V
23 1stexg 6234 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 1st `  a )  e. 
_V )
2422, 23ax-mp 5 . . . . . . . . . . 11  |-  ( 1st `  a )  e.  _V
25 2ndexg 6235 . . . . . . . . . . . 12  |-  ( a  e.  _V  ->  ( 2nd `  a )  e. 
_V )
2622, 25ax-mp 5 . . . . . . . . . . 11  |-  ( 2nd `  a )  e.  _V
27 eqcom 2198 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  a )  =  x  <->  x  =  ( 1st `  a ) )
28 eqcom 2198 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  a )  =  y  <->  y  =  ( 2nd `  a ) )
2927, 28anbi12i 460 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y )  <->  ( x  =  ( 1st `  a
)  /\  y  =  ( 2nd `  a ) ) )
30 eqopi 6239 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  =  x  /\  ( 2nd `  a )  =  y ) )  ->  a  =  <. x ,  y >. )
3129, 30sylan2br 288 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
a  =  <. x ,  y >. )
3216bicomd 141 . . . . . . . . . . . . 13  |-  ( a  =  <. x ,  y
>.  ->  ( ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
3331, 32syl 14 . . . . . . . . . . . 12  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  a )  /\  y  =  ( 2nd `  a
) ) )  -> 
( ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  ( w  =  <. a ,  z
>.  /\  ps ) ) )
344, 8, 33spc2ed 6300 . . . . . . . . . . 11  |-  ( ( a  e.  ( _V 
X.  _V )  /\  (
( 1st `  a
)  e.  _V  /\  ( 2nd `  a )  e.  _V ) )  ->  ( ( w  =  <. a ,  z
>.  /\  ps )  ->  E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) ) )
3524, 26, 34mpanr12 439 . . . . . . . . . 10  |-  ( a  e.  ( _V  X.  _V )  ->  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) ) )
3621, 35mpcom 36 . . . . . . . . 9  |-  ( ( w  =  <. a ,  z >.  /\  ps )  ->  E. x E. y
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) )
3736exlimiv 1612 . . . . . . . 8  |-  ( E. a ( w  = 
<. a ,  z >.  /\  ps )  ->  E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) )
3819, 37impbii 126 . . . . . . 7  |-  ( E. x E. y ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )  <->  E. a
( w  =  <. a ,  z >.  /\  ps ) )
3938exbii 1619 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. z E. a ( w  = 
<. a ,  z >.  /\  ps ) )
40 exrot3 1704 . . . . . 6  |-  ( E. z E. x E. y ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
411, 39, 403bitr2ri 209 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. a E. z ( w  = 
<. a ,  z >.  /\  ps ) )
4241abbii 2312 . . . 4  |-  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }  =  { w  |  E. a E. z ( w  =  <. a ,  z
>.  /\  ps ) }
43 df-oprab 5929 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
44 df-opab 4096 . . . 4  |-  { <. a ,  z >.  |  ps }  =  { w  |  E. a E. z
( w  =  <. a ,  z >.  /\  ps ) }
4542, 43, 443eqtr4ri 2228 . . 3  |-  { <. a ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z
>.  |  ph }
4645cnveqi 4842 . 2  |-  `' { <. a ,  z >.  |  ps }  =  `' { <. <. x ,  y
>. ,  z >.  | 
ph }
47 cnvopab 5072 . 2  |-  `' { <. a ,  z >.  |  ps }  =  { <. z ,  a >.  |  ps }
4846, 47eqtr3i 2219 1  |-  `' { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. z ,  a >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474   E.wex 1506    e. wcel 2167   {cab 2182   _Vcvv 2763   <.cop 3626   {copab 4094    X. cxp 4662   `'ccnv 4663   ` cfv 5259   {coprab 5926   1stc1st 6205   2ndc2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-oprab 5929  df-1st 6207  df-2nd 6208
This theorem is referenced by:  f1od2  6302
  Copyright terms: Public domain W3C validator