| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexiunxp | Unicode version | ||
| Description: Write a double restricted
quantification as one universal quantifier.
In this version of rexxp 4822, |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| rexiunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliunxp 4817 |
. . . . . 6
| |
| 2 | 1 | anbi1i 458 |
. . . . 5
|
| 3 | 19.41vv 1927 |
. . . . 5
| |
| 4 | 2, 3 | bitr4i 187 |
. . . 4
|
| 5 | 4 | exbii 1628 |
. . 3
|
| 6 | exrot3 1713 |
. . . 4
| |
| 7 | anass 401 |
. . . . . . 7
| |
| 8 | 7 | exbii 1628 |
. . . . . 6
|
| 9 | vex 2775 |
. . . . . . . 8
| |
| 10 | vex 2775 |
. . . . . . . 8
| |
| 11 | 9, 10 | opex 4273 |
. . . . . . 7
|
| 12 | ralxp.1 |
. . . . . . . 8
| |
| 13 | 12 | anbi2d 464 |
. . . . . . 7
|
| 14 | 11, 13 | ceqsexv 2811 |
. . . . . 6
|
| 15 | 8, 14 | bitri 184 |
. . . . 5
|
| 16 | 15 | 2exbii 1629 |
. . . 4
|
| 17 | 6, 16 | bitri 184 |
. . 3
|
| 18 | 5, 17 | bitri 184 |
. 2
|
| 19 | df-rex 2490 |
. 2
| |
| 20 | r2ex 2526 |
. 2
| |
| 21 | 18, 19, 20 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-iun 3929 df-opab 4106 df-xp 4681 df-rel 4682 |
| This theorem is referenced by: rexxp 4822 |
| Copyright terms: Public domain | W3C validator |