ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabm Unicode version

Theorem opabm 4369
Description: Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.)
Assertion
Ref Expression
opabm  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. x E. y ph )
Distinct variable groups:    ph, z    x, z    y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabm
StepHypRef Expression
1 elopab 4346 . . 3  |-  ( z  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) )
21exbii 1651 . 2  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. z E. x E. y ( z  =  <. x ,  y >.  /\  ph ) )
3 exrot3 1736 . 2  |-  ( E. z E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. z ( z  =  <. x ,  y >.  /\  ph ) )
4 vex 2802 . . . . . 6  |-  x  e. 
_V
5 vex 2802 . . . . . 6  |-  y  e. 
_V
64, 5opex 4315 . . . . 5  |-  <. x ,  y >.  e.  _V
76isseti 2808 . . . 4  |-  E. z 
z  =  <. x ,  y >.
8 19.41v 1949 . . . 4  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  ( E. z  z  =  <. x ,  y >.  /\  ph ) )
97, 8mpbiran 946 . . 3  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  ph )
1092exbii 1652 . 2  |-  ( E. x E. y E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
112, 3, 103bitri 206 1  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   <.cop 3669   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146
This theorem is referenced by:  lgsquadlem3  15758
  Copyright terms: Public domain W3C validator