ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabm Unicode version

Theorem opabm 4258
Description: Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.)
Assertion
Ref Expression
opabm  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. x E. y ph )
Distinct variable groups:    ph, z    x, z    y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabm
StepHypRef Expression
1 elopab 4236 . . 3  |-  ( z  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) )
21exbii 1593 . 2  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. z E. x E. y ( z  =  <. x ,  y >.  /\  ph ) )
3 exrot3 1678 . 2  |-  ( E. z E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. z ( z  =  <. x ,  y >.  /\  ph ) )
4 vex 2729 . . . . . 6  |-  x  e. 
_V
5 vex 2729 . . . . . 6  |-  y  e. 
_V
64, 5opex 4207 . . . . 5  |-  <. x ,  y >.  e.  _V
76isseti 2734 . . . 4  |-  E. z 
z  =  <. x ,  y >.
8 19.41v 1890 . . . 4  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  ( E. z  z  =  <. x ,  y >.  /\  ph ) )
97, 8mpbiran 930 . . 3  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  ph )
1092exbii 1594 . 2  |-  ( E. x E. y E. z ( z  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
112, 3, 103bitri 205 1  |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579   {copab 4042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-opab 4044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator