ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprab Unicode version

Theorem dmoprab 5818
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
dmoprab  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5784 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21dmeqi 4708 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  dom  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 dmopab 4718 . 2  |-  dom  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1651 . . . . 5  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. z ( w  =  <. x ,  y >.  /\  ph ) )
5 19.42v 1860 . . . . . 6  |-  ( E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  ( w  =  <. x ,  y
>.  /\  E. z ph ) )
652exbii 1568 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
74, 6bitri 183 . . . 4  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
87abbii 2231 . . 3  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z ph ) }
9 df-opab 3958 . . 3  |-  { <. x ,  y >.  |  E. z ph }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph ) }
108, 9eqtr4i 2139 . 2  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { <. x ,  y
>.  |  E. z ph }
112, 3, 103eqtri 2140 1  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314   E.wex 1451   {cab 2101   <.cop 3498   {copab 3956   dom cdm 4507   {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-dm 4517  df-oprab 5744
This theorem is referenced by:  dmoprabss  5819  reldmoprab  5822  fnoprabg  5838  dmaddpq  7151  dmmulpq  7152
  Copyright terms: Public domain W3C validator