| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmoprab | Unicode version | ||
| Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| dmoprab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 6015 |
. . 3
| |
| 2 | 1 | dmeqi 4898 |
. 2
|
| 3 | dmopab 4908 |
. 2
| |
| 4 | exrot3 1714 |
. . . . 5
| |
| 5 | 19.42v 1931 |
. . . . . 6
| |
| 6 | 5 | 2exbii 1630 |
. . . . 5
|
| 7 | 4, 6 | bitri 184 |
. . . 4
|
| 8 | 7 | abbii 2323 |
. . 3
|
| 9 | df-opab 4122 |
. . 3
| |
| 10 | 8, 9 | eqtr4i 2231 |
. 2
|
| 11 | 2, 3, 10 | 3eqtri 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-dm 4703 df-oprab 5971 |
| This theorem is referenced by: dmoprabss 6050 reldmoprab 6053 fnoprabg 6069 dmaddpq 7527 dmmulpq 7528 |
| Copyright terms: Public domain | W3C validator |