ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmoprab Unicode version

Theorem dmoprab 5923
Description: The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
dmoprab  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dmoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5889 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21dmeqi 4805 . 2  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  dom  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 dmopab 4815 . 2  |-  dom  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
w  |  E. z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1678 . . . . 5  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. z ( w  =  <. x ,  y >.  /\  ph ) )
5 19.42v 1894 . . . . . 6  |-  ( E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  ( w  =  <. x ,  y
>.  /\  E. z ph ) )
652exbii 1594 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
74, 6bitri 183 . . . 4  |-  ( E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph )
)
87abbii 2282 . . 3  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z ph ) }
9 df-opab 4044 . . 3  |-  { <. x ,  y >.  |  E. z ph }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z ph ) }
108, 9eqtr4i 2189 . 2  |-  { w  |  E. z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  =  { <. x ,  y
>.  |  E. z ph }
112, 3, 103eqtri 2190 1  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. x ,  y >.  |  E. z ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480   {cab 2151   <.cop 3579   {copab 4042   dom cdm 4604   {coprab 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-dm 4614  df-oprab 5846
This theorem is referenced by:  dmoprabss  5924  reldmoprab  5927  fnoprabg  5943  dmaddpq  7320  dmmulpq  7321
  Copyright terms: Public domain W3C validator