| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exsnrex | Unicode version | ||
| Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| Ref | Expression |
|---|---|
| exsnrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 |
. . . . . 6
| |
| 2 | 1 | snid 3663 |
. . . . 5
|
| 3 | eleq2 2268 |
. . . . 5
| |
| 4 | 2, 3 | mpbiri 168 |
. . . 4
|
| 5 | 4 | pm4.71ri 392 |
. . 3
|
| 6 | 5 | exbii 1627 |
. 2
|
| 7 | df-rex 2489 |
. 2
| |
| 8 | 6, 7 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-sn 3638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |