ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex Unicode version

Theorem exsnrex 3708
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2802 . . . . . 6  |-  x  e. 
_V
21snid 3697 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2293 . . . . 5  |-  ( M  =  { x }  ->  ( x  e.  M  <->  x  e.  { x }
) )
42, 3mpbiri 168 . . . 4  |-  ( M  =  { x }  ->  x  e.  M )
54pm4.71ri 392 . . 3  |-  ( M  =  { x }  <->  ( x  e.  M  /\  M  =  { x } ) )
65exbii 1651 . 2  |-  ( E. x  M  =  {
x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
7 df-rex 2514 . 2  |-  ( E. x  e.  M  M  =  { x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
86, 7bitr4i 187 1  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator