ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex Unicode version

Theorem exsnrex 3661
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2763 . . . . . 6  |-  x  e. 
_V
21snid 3650 . . . . 5  |-  x  e. 
{ x }
3 eleq2 2257 . . . . 5  |-  ( M  =  { x }  ->  ( x  e.  M  <->  x  e.  { x }
) )
42, 3mpbiri 168 . . . 4  |-  ( M  =  { x }  ->  x  e.  M )
54pm4.71ri 392 . . 3  |-  ( M  =  { x }  <->  ( x  e.  M  /\  M  =  { x } ) )
65exbii 1616 . 2  |-  ( E. x  M  =  {
x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
7 df-rex 2478 . 2  |-  ( E. x  e.  M  M  =  { x }  <->  E. x
( x  e.  M  /\  M  =  {
x } ) )
86, 7bitr4i 187 1  |-  ( E. x  M  =  {
x }  <->  E. x  e.  M  M  =  { x } )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sn 3625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator