ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsn Unicode version

Theorem ralsn 3650
Description: Convert a quantification over a singleton to a substitution. (Contributed by NM, 27-Apr-2009.)
Hypotheses
Ref Expression
ralsn.1  |-  A  e. 
_V
ralsn.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralsn  |-  ( A. x  e.  { A } ph  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ralsn
StepHypRef Expression
1 ralsn.1 . 2  |-  A  e. 
_V
2 ralsn.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32ralsng 3647 . 2  |-  ( A  e.  _V  ->  ( A. x  e.  { A } ph  <->  ps ) )
41, 3ax-mp 5 1  |-  ( A. x  e.  { A } ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   {csn 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-sbc 2978  df-sn 3613
This theorem is referenced by:  tfr0dm  6341  elixpsn  6753  finomni  7156  nninfsellemdc  15157
  Copyright terms: Public domain W3C validator