ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex GIF version

Theorem exsnrex 3618
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2729 . . . . . 6 𝑥 ∈ V
21snid 3607 . . . . 5 𝑥 ∈ {𝑥}
3 eleq2 2230 . . . . 5 (𝑀 = {𝑥} → (𝑥𝑀𝑥 ∈ {𝑥}))
42, 3mpbiri 167 . . . 4 (𝑀 = {𝑥} → 𝑥𝑀)
54pm4.71ri 390 . . 3 (𝑀 = {𝑥} ↔ (𝑥𝑀𝑀 = {𝑥}))
65exbii 1593 . 2 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
7 df-rex 2450 . 2 (∃𝑥𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
86, 7bitr4i 186 1 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wrex 2445  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator