Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exsnrex | GIF version |
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
exsnrex | ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 3607 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} |
3 | eleq2 2230 | . . . . 5 ⊢ (𝑀 = {𝑥} → (𝑥 ∈ 𝑀 ↔ 𝑥 ∈ {𝑥})) | |
4 | 2, 3 | mpbiri 167 | . . . 4 ⊢ (𝑀 = {𝑥} → 𝑥 ∈ 𝑀) |
5 | 4 | pm4.71ri 390 | . . 3 ⊢ (𝑀 = {𝑥} ↔ (𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
6 | 5 | exbii 1593 | . 2 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
7 | df-rex 2450 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) | |
8 | 6, 7 | bitr4i 186 | 1 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |