ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsnrex GIF version

Theorem exsnrex 3635
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})

Proof of Theorem exsnrex
StepHypRef Expression
1 vex 2741 . . . . . 6 𝑥 ∈ V
21snid 3624 . . . . 5 𝑥 ∈ {𝑥}
3 eleq2 2241 . . . . 5 (𝑀 = {𝑥} → (𝑥𝑀𝑥 ∈ {𝑥}))
42, 3mpbiri 168 . . . 4 (𝑀 = {𝑥} → 𝑥𝑀)
54pm4.71ri 392 . . 3 (𝑀 = {𝑥} ↔ (𝑥𝑀𝑀 = {𝑥}))
65exbii 1605 . 2 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
7 df-rex 2461 . 2 (∃𝑥𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
86, 7bitr4i 187 1 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-sn 3599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator