ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmu Unicode version

Theorem fndmu 5377
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
fndmu  |-  ( ( F  Fn  A  /\  F  Fn  B )  ->  A  =  B )

Proof of Theorem fndmu
StepHypRef Expression
1 fndm 5373 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
2 fndm 5373 . 2  |-  ( F  Fn  B  ->  dom  F  =  B )
31, 2sylan9req 2259 1  |-  ( ( F  Fn  A  /\  F  Fn  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   dom cdm 4675    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-fn 5274
This theorem is referenced by:  fodmrnu  5506  tfrlemisucaccv  6411  tfr1onlemsucaccv  6427  tfrcllemsucaccv  6440  0fz1  10167  lmodfopnelem1  14086
  Copyright terms: Public domain W3C validator