ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr Unicode version

Theorem fnbr 5300
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5296 . . 3  |-  ( F  Fn  A  ->  Rel  F )
2 releldm 4846 . . 3  |-  ( ( Rel  F  /\  B F C )  ->  B  e.  dom  F )
31, 2sylan 281 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  dom  F )
4 fndm 5297 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
54eleq2d 2240 . . 3  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
65biimpa 294 . 2  |-  ( ( F  Fn  A  /\  B  e.  dom  F )  ->  B  e.  A
)
73, 6syldan 280 1  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   class class class wbr 3989   dom cdm 4611   Rel wrel 4616    Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by:  fnop  5301  dffn5im  5542  dffo4  5644  dffo5  5645  tfrlem5  6293
  Copyright terms: Public domain W3C validator