ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr Unicode version

Theorem fnbr 5310
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5306 . . 3  |-  ( F  Fn  A  ->  Rel  F )
2 releldm 4855 . . 3  |-  ( ( Rel  F  /\  B F C )  ->  B  e.  dom  F )
31, 2sylan 283 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  dom  F )
4 fndm 5307 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
54eleq2d 2245 . . 3  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
65biimpa 296 . 2  |-  ( ( F  Fn  A  /\  B  e.  dom  F )  ->  B  e.  A
)
73, 6syldan 282 1  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   class class class wbr 3998   dom cdm 4620   Rel wrel 4625    Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-dm 4630  df-fun 5210  df-fn 5211
This theorem is referenced by:  fnop  5311  dffn5im  5553  dffo4  5656  dffo5  5657  tfrlem5  6305
  Copyright terms: Public domain W3C validator