ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr Unicode version

Theorem fnbr 5290
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5286 . . 3  |-  ( F  Fn  A  ->  Rel  F )
2 releldm 4839 . . 3  |-  ( ( Rel  F  /\  B F C )  ->  B  e.  dom  F )
31, 2sylan 281 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  dom  F )
4 fndm 5287 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
54eleq2d 2236 . . 3  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
65biimpa 294 . 2  |-  ( ( F  Fn  A  /\  B  e.  dom  F )  ->  B  e.  A
)
73, 6syldan 280 1  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3982   dom cdm 4604   Rel wrel 4609    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by:  fnop  5291  dffn5im  5532  dffo4  5633  dffo5  5634  tfrlem5  6282
  Copyright terms: Public domain W3C validator