ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbr Unicode version

Theorem fnbr 5379
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 5373 . . 3  |-  ( F  Fn  A  ->  Rel  F )
2 releldm 4914 . . 3  |-  ( ( Rel  F  /\  B F C )  ->  B  e.  dom  F )
31, 2sylan 283 . 2  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  dom  F )
4 fndm 5374 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
54eleq2d 2275 . . 3  |-  ( F  Fn  A  ->  ( B  e.  dom  F  <->  B  e.  A ) )
65biimpa 296 . 2  |-  ( ( F  Fn  A  /\  B  e.  dom  F )  ->  B  e.  A
)
73, 6syldan 282 1  |-  ( ( F  Fn  A  /\  B F C )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   class class class wbr 4045   dom cdm 4676   Rel wrel 4681    Fn wfn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-dm 4686  df-fun 5274  df-fn 5275
This theorem is referenced by:  fnop  5380  dffn5im  5626  dffo4  5730  dffo5  5731  tfrlem5  6402
  Copyright terms: Public domain W3C validator