| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6420. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemisucfn.3 |
|
| tfrlemisucfn.4 |
|
| tfrlemisucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrlemisucaccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.3 |
. . . 4
| |
| 2 | onsuc 4550 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | tfrlemisucfn.1 |
. . . 4
| |
| 5 | tfrlemisucfn.2 |
. . . 4
| |
| 6 | tfrlemisucfn.4 |
. . . 4
| |
| 7 | tfrlemisucfn.5 |
. . . 4
| |
| 8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6412 |
. . 3
|
| 9 | vex 2775 |
. . . . . 6
| |
| 10 | 9 | elsuc 4454 |
. . . . 5
|
| 11 | vex 2775 |
. . . . . . . . . . 11
| |
| 12 | 4, 11 | tfrlem3a 6398 |
. . . . . . . . . 10
|
| 13 | 7, 12 | sylib 122 |
. . . . . . . . 9
|
| 14 | simprrr 540 |
. . . . . . . . . 10
| |
| 15 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 16 | 6 | adantr 276 |
. . . . . . . . . . . 12
|
| 17 | fndmu 5378 |
. . . . . . . . . . . 12
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . . . . . . 11
|
| 19 | 18 | raleqdv 2708 |
. . . . . . . . . 10
|
| 20 | 14, 19 | mpbid 147 |
. . . . . . . . 9
|
| 21 | 13, 20 | rexlimddv 2628 |
. . . . . . . 8
|
| 22 | 21 | r19.21bi 2594 |
. . . . . . 7
|
| 23 | elirrv 4597 |
. . . . . . . . . . 11
| |
| 24 | elequ2 2181 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | mtbiri 677 |
. . . . . . . . . 10
|
| 26 | 25 | necon2ai 2430 |
. . . . . . . . 9
|
| 27 | 26 | adantl 277 |
. . . . . . . 8
|
| 28 | fvunsng 5780 |
. . . . . . . 8
| |
| 29 | 9, 27, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | eloni 4423 |
. . . . . . . . . . . 12
| |
| 31 | 1, 30 | syl 14 |
. . . . . . . . . . 11
|
| 32 | ordelss 4427 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | sylan 283 |
. . . . . . . . . 10
|
| 34 | resabs1 4989 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | elirrv 4597 |
. . . . . . . . . . . 12
| |
| 37 | fsnunres 5788 |
. . . . . . . . . . . 12
| |
| 38 | 6, 36, 37 | sylancl 413 |
. . . . . . . . . . 11
|
| 39 | 38 | reseq1d 4959 |
. . . . . . . . . 10
|
| 40 | 39 | adantr 276 |
. . . . . . . . 9
|
| 41 | 35, 40 | eqtr3d 2240 |
. . . . . . . 8
|
| 42 | 41 | fveq2d 5582 |
. . . . . . 7
|
| 43 | 22, 29, 42 | 3eqtr4d 2248 |
. . . . . 6
|
| 44 | 5 | tfrlem3-2d 6400 |
. . . . . . . . . 10
|
| 45 | 44 | simprd 114 |
. . . . . . . . 9
|
| 46 | fndm 5374 |
. . . . . . . . . . . 12
| |
| 47 | 6, 46 | syl 14 |
. . . . . . . . . . 11
|
| 48 | 47 | eleq2d 2275 |
. . . . . . . . . 10
|
| 49 | 36, 48 | mtbiri 677 |
. . . . . . . . 9
|
| 50 | fsnunfv 5787 |
. . . . . . . . 9
| |
| 51 | 1, 45, 49, 50 | syl3anc 1250 |
. . . . . . . 8
|
| 52 | 51 | adantr 276 |
. . . . . . 7
|
| 53 | simpr 110 |
. . . . . . . 8
| |
| 54 | 53 | fveq2d 5582 |
. . . . . . 7
|
| 55 | reseq2 4955 |
. . . . . . . . 9
| |
| 56 | 55, 38 | sylan9eqr 2260 |
. . . . . . . 8
|
| 57 | 56 | fveq2d 5582 |
. . . . . . 7
|
| 58 | 52, 54, 57 | 3eqtr4d 2248 |
. . . . . 6
|
| 59 | 43, 58 | jaodan 799 |
. . . . 5
|
| 60 | 10, 59 | sylan2b 287 |
. . . 4
|
| 61 | 60 | ralrimiva 2579 |
. . 3
|
| 62 | fneq2 5364 |
. . . . 5
| |
| 63 | raleq 2702 |
. . . . 5
| |
| 64 | 62, 63 | anbi12d 473 |
. . . 4
|
| 65 | 64 | rspcev 2877 |
. . 3
|
| 66 | 3, 8, 61, 65 | syl12anc 1248 |
. 2
|
| 67 | vex 2775 |
. . . . . 6
| |
| 68 | opexg 4273 |
. . . . . 6
| |
| 69 | 67, 45, 68 | sylancr 414 |
. . . . 5
|
| 70 | snexg 4229 |
. . . . 5
| |
| 71 | 69, 70 | syl 14 |
. . . 4
|
| 72 | unexg 4491 |
. . . 4
| |
| 73 | 11, 71, 72 | sylancr 414 |
. . 3
|
| 74 | 4 | tfrlem3ag 6397 |
. . 3
|
| 75 | 73, 74 | syl 14 |
. 2
|
| 76 | 66, 75 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: tfrlemibacc 6414 tfrlemi14d 6421 |
| Copyright terms: Public domain | W3C validator |