Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version |
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6300. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | |
tfrlemisucfn.2 | |
tfrlemisucfn.3 | |
tfrlemisucfn.4 | |
tfrlemisucfn.5 |
Ref | Expression |
---|---|
tfrlemisucaccv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.3 | . . . 4 | |
2 | suceloni 4478 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | tfrlemisucfn.1 | . . . 4 | |
5 | tfrlemisucfn.2 | . . . 4 | |
6 | tfrlemisucfn.4 | . . . 4 | |
7 | tfrlemisucfn.5 | . . . 4 | |
8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6292 | . . 3 |
9 | vex 2729 | . . . . . 6 | |
10 | 9 | elsuc 4384 | . . . . 5 |
11 | vex 2729 | . . . . . . . . . . 11 | |
12 | 4, 11 | tfrlem3a 6278 | . . . . . . . . . 10 |
13 | 7, 12 | sylib 121 | . . . . . . . . 9 |
14 | simprrr 530 | . . . . . . . . . 10 | |
15 | simprrl 529 | . . . . . . . . . . . 12 | |
16 | 6 | adantr 274 | . . . . . . . . . . . 12 |
17 | fndmu 5289 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | syl2anc 409 | . . . . . . . . . . 11 |
19 | 18 | raleqdv 2667 | . . . . . . . . . 10 |
20 | 14, 19 | mpbid 146 | . . . . . . . . 9 |
21 | 13, 20 | rexlimddv 2588 | . . . . . . . 8 |
22 | 21 | r19.21bi 2554 | . . . . . . 7 |
23 | elirrv 4525 | . . . . . . . . . . 11 | |
24 | elequ2 2141 | . . . . . . . . . . 11 | |
25 | 23, 24 | mtbiri 665 | . . . . . . . . . 10 |
26 | 25 | necon2ai 2390 | . . . . . . . . 9 |
27 | 26 | adantl 275 | . . . . . . . 8 |
28 | fvunsng 5679 | . . . . . . . 8 | |
29 | 9, 27, 28 | sylancr 411 | . . . . . . 7 |
30 | eloni 4353 | . . . . . . . . . . . 12 | |
31 | 1, 30 | syl 14 | . . . . . . . . . . 11 |
32 | ordelss 4357 | . . . . . . . . . . 11 | |
33 | 31, 32 | sylan 281 | . . . . . . . . . 10 |
34 | resabs1 4913 | . . . . . . . . . 10 | |
35 | 33, 34 | syl 14 | . . . . . . . . 9 |
36 | elirrv 4525 | . . . . . . . . . . . 12 | |
37 | fsnunres 5687 | . . . . . . . . . . . 12 | |
38 | 6, 36, 37 | sylancl 410 | . . . . . . . . . . 11 |
39 | 38 | reseq1d 4883 | . . . . . . . . . 10 |
40 | 39 | adantr 274 | . . . . . . . . 9 |
41 | 35, 40 | eqtr3d 2200 | . . . . . . . 8 |
42 | 41 | fveq2d 5490 | . . . . . . 7 |
43 | 22, 29, 42 | 3eqtr4d 2208 | . . . . . 6 |
44 | 5 | tfrlem3-2d 6280 | . . . . . . . . . 10 |
45 | 44 | simprd 113 | . . . . . . . . 9 |
46 | fndm 5287 | . . . . . . . . . . . 12 | |
47 | 6, 46 | syl 14 | . . . . . . . . . . 11 |
48 | 47 | eleq2d 2236 | . . . . . . . . . 10 |
49 | 36, 48 | mtbiri 665 | . . . . . . . . 9 |
50 | fsnunfv 5686 | . . . . . . . . 9 | |
51 | 1, 45, 49, 50 | syl3anc 1228 | . . . . . . . 8 |
52 | 51 | adantr 274 | . . . . . . 7 |
53 | simpr 109 | . . . . . . . 8 | |
54 | 53 | fveq2d 5490 | . . . . . . 7 |
55 | reseq2 4879 | . . . . . . . . 9 | |
56 | 55, 38 | sylan9eqr 2221 | . . . . . . . 8 |
57 | 56 | fveq2d 5490 | . . . . . . 7 |
58 | 52, 54, 57 | 3eqtr4d 2208 | . . . . . 6 |
59 | 43, 58 | jaodan 787 | . . . . 5 |
60 | 10, 59 | sylan2b 285 | . . . 4 |
61 | 60 | ralrimiva 2539 | . . 3 |
62 | fneq2 5277 | . . . . 5 | |
63 | raleq 2661 | . . . . 5 | |
64 | 62, 63 | anbi12d 465 | . . . 4 |
65 | 64 | rspcev 2830 | . . 3 |
66 | 3, 8, 61, 65 | syl12anc 1226 | . 2 |
67 | vex 2729 | . . . . . 6 | |
68 | opexg 4206 | . . . . . 6 | |
69 | 67, 45, 68 | sylancr 411 | . . . . 5 |
70 | snexg 4163 | . . . . 5 | |
71 | 69, 70 | syl 14 | . . . 4 |
72 | unexg 4421 | . . . 4 | |
73 | 11, 71, 72 | sylancr 411 | . . 3 |
74 | 4 | tfrlem3ag 6277 | . . 3 |
75 | 73, 74 | syl 14 | . 2 |
76 | 66, 75 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wal 1341 wceq 1343 wcel 2136 cab 2151 wne 2336 wral 2444 wrex 2445 cvv 2726 cun 3114 wss 3116 csn 3576 cop 3579 word 4340 con0 4341 csuc 4343 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfrlemibacc 6294 tfrlemi14d 6301 |
Copyright terms: Public domain | W3C validator |