| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version | ||
| Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6390. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemisucfn.3 |
|
| tfrlemisucfn.4 |
|
| tfrlemisucfn.5 |
|
| Ref | Expression |
|---|---|
| tfrlemisucaccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.3 |
. . . 4
| |
| 2 | onsuc 4537 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | tfrlemisucfn.1 |
. . . 4
| |
| 5 | tfrlemisucfn.2 |
. . . 4
| |
| 6 | tfrlemisucfn.4 |
. . . 4
| |
| 7 | tfrlemisucfn.5 |
. . . 4
| |
| 8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6382 |
. . 3
|
| 9 | vex 2766 |
. . . . . 6
| |
| 10 | 9 | elsuc 4441 |
. . . . 5
|
| 11 | vex 2766 |
. . . . . . . . . . 11
| |
| 12 | 4, 11 | tfrlem3a 6368 |
. . . . . . . . . 10
|
| 13 | 7, 12 | sylib 122 |
. . . . . . . . 9
|
| 14 | simprrr 540 |
. . . . . . . . . 10
| |
| 15 | simprrl 539 |
. . . . . . . . . . . 12
| |
| 16 | 6 | adantr 276 |
. . . . . . . . . . . 12
|
| 17 | fndmu 5359 |
. . . . . . . . . . . 12
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . . . . . . 11
|
| 19 | 18 | raleqdv 2699 |
. . . . . . . . . 10
|
| 20 | 14, 19 | mpbid 147 |
. . . . . . . . 9
|
| 21 | 13, 20 | rexlimddv 2619 |
. . . . . . . 8
|
| 22 | 21 | r19.21bi 2585 |
. . . . . . 7
|
| 23 | elirrv 4584 |
. . . . . . . . . . 11
| |
| 24 | elequ2 2172 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | mtbiri 676 |
. . . . . . . . . 10
|
| 26 | 25 | necon2ai 2421 |
. . . . . . . . 9
|
| 27 | 26 | adantl 277 |
. . . . . . . 8
|
| 28 | fvunsng 5756 |
. . . . . . . 8
| |
| 29 | 9, 27, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | eloni 4410 |
. . . . . . . . . . . 12
| |
| 31 | 1, 30 | syl 14 |
. . . . . . . . . . 11
|
| 32 | ordelss 4414 |
. . . . . . . . . . 11
| |
| 33 | 31, 32 | sylan 283 |
. . . . . . . . . 10
|
| 34 | resabs1 4975 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | syl 14 |
. . . . . . . . 9
|
| 36 | elirrv 4584 |
. . . . . . . . . . . 12
| |
| 37 | fsnunres 5764 |
. . . . . . . . . . . 12
| |
| 38 | 6, 36, 37 | sylancl 413 |
. . . . . . . . . . 11
|
| 39 | 38 | reseq1d 4945 |
. . . . . . . . . 10
|
| 40 | 39 | adantr 276 |
. . . . . . . . 9
|
| 41 | 35, 40 | eqtr3d 2231 |
. . . . . . . 8
|
| 42 | 41 | fveq2d 5562 |
. . . . . . 7
|
| 43 | 22, 29, 42 | 3eqtr4d 2239 |
. . . . . 6
|
| 44 | 5 | tfrlem3-2d 6370 |
. . . . . . . . . 10
|
| 45 | 44 | simprd 114 |
. . . . . . . . 9
|
| 46 | fndm 5357 |
. . . . . . . . . . . 12
| |
| 47 | 6, 46 | syl 14 |
. . . . . . . . . . 11
|
| 48 | 47 | eleq2d 2266 |
. . . . . . . . . 10
|
| 49 | 36, 48 | mtbiri 676 |
. . . . . . . . 9
|
| 50 | fsnunfv 5763 |
. . . . . . . . 9
| |
| 51 | 1, 45, 49, 50 | syl3anc 1249 |
. . . . . . . 8
|
| 52 | 51 | adantr 276 |
. . . . . . 7
|
| 53 | simpr 110 |
. . . . . . . 8
| |
| 54 | 53 | fveq2d 5562 |
. . . . . . 7
|
| 55 | reseq2 4941 |
. . . . . . . . 9
| |
| 56 | 55, 38 | sylan9eqr 2251 |
. . . . . . . 8
|
| 57 | 56 | fveq2d 5562 |
. . . . . . 7
|
| 58 | 52, 54, 57 | 3eqtr4d 2239 |
. . . . . 6
|
| 59 | 43, 58 | jaodan 798 |
. . . . 5
|
| 60 | 10, 59 | sylan2b 287 |
. . . 4
|
| 61 | 60 | ralrimiva 2570 |
. . 3
|
| 62 | fneq2 5347 |
. . . . 5
| |
| 63 | raleq 2693 |
. . . . 5
| |
| 64 | 62, 63 | anbi12d 473 |
. . . 4
|
| 65 | 64 | rspcev 2868 |
. . 3
|
| 66 | 3, 8, 61, 65 | syl12anc 1247 |
. 2
|
| 67 | vex 2766 |
. . . . . 6
| |
| 68 | opexg 4261 |
. . . . . 6
| |
| 69 | 67, 45, 68 | sylancr 414 |
. . . . 5
|
| 70 | snexg 4217 |
. . . . 5
| |
| 71 | 69, 70 | syl 14 |
. . . 4
|
| 72 | unexg 4478 |
. . . 4
| |
| 73 | 11, 71, 72 | sylancr 414 |
. . 3
|
| 74 | 4 | tfrlem3ag 6367 |
. . 3
|
| 75 | 73, 74 | syl 14 |
. 2
|
| 76 | 66, 75 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 |
| This theorem is referenced by: tfrlemibacc 6384 tfrlemi14d 6391 |
| Copyright terms: Public domain | W3C validator |