Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version |
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6311. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | |
tfrlemisucfn.2 | |
tfrlemisucfn.3 | |
tfrlemisucfn.4 | |
tfrlemisucfn.5 |
Ref | Expression |
---|---|
tfrlemisucaccv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.3 | . . . 4 | |
2 | suceloni 4485 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | tfrlemisucfn.1 | . . . 4 | |
5 | tfrlemisucfn.2 | . . . 4 | |
6 | tfrlemisucfn.4 | . . . 4 | |
7 | tfrlemisucfn.5 | . . . 4 | |
8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6303 | . . 3 |
9 | vex 2733 | . . . . . 6 | |
10 | 9 | elsuc 4391 | . . . . 5 |
11 | vex 2733 | . . . . . . . . . . 11 | |
12 | 4, 11 | tfrlem3a 6289 | . . . . . . . . . 10 |
13 | 7, 12 | sylib 121 | . . . . . . . . 9 |
14 | simprrr 535 | . . . . . . . . . 10 | |
15 | simprrl 534 | . . . . . . . . . . . 12 | |
16 | 6 | adantr 274 | . . . . . . . . . . . 12 |
17 | fndmu 5299 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | syl2anc 409 | . . . . . . . . . . 11 |
19 | 18 | raleqdv 2671 | . . . . . . . . . 10 |
20 | 14, 19 | mpbid 146 | . . . . . . . . 9 |
21 | 13, 20 | rexlimddv 2592 | . . . . . . . 8 |
22 | 21 | r19.21bi 2558 | . . . . . . 7 |
23 | elirrv 4532 | . . . . . . . . . . 11 | |
24 | elequ2 2146 | . . . . . . . . . . 11 | |
25 | 23, 24 | mtbiri 670 | . . . . . . . . . 10 |
26 | 25 | necon2ai 2394 | . . . . . . . . 9 |
27 | 26 | adantl 275 | . . . . . . . 8 |
28 | fvunsng 5690 | . . . . . . . 8 | |
29 | 9, 27, 28 | sylancr 412 | . . . . . . 7 |
30 | eloni 4360 | . . . . . . . . . . . 12 | |
31 | 1, 30 | syl 14 | . . . . . . . . . . 11 |
32 | ordelss 4364 | . . . . . . . . . . 11 | |
33 | 31, 32 | sylan 281 | . . . . . . . . . 10 |
34 | resabs1 4920 | . . . . . . . . . 10 | |
35 | 33, 34 | syl 14 | . . . . . . . . 9 |
36 | elirrv 4532 | . . . . . . . . . . . 12 | |
37 | fsnunres 5698 | . . . . . . . . . . . 12 | |
38 | 6, 36, 37 | sylancl 411 | . . . . . . . . . . 11 |
39 | 38 | reseq1d 4890 | . . . . . . . . . 10 |
40 | 39 | adantr 274 | . . . . . . . . 9 |
41 | 35, 40 | eqtr3d 2205 | . . . . . . . 8 |
42 | 41 | fveq2d 5500 | . . . . . . 7 |
43 | 22, 29, 42 | 3eqtr4d 2213 | . . . . . 6 |
44 | 5 | tfrlem3-2d 6291 | . . . . . . . . . 10 |
45 | 44 | simprd 113 | . . . . . . . . 9 |
46 | fndm 5297 | . . . . . . . . . . . 12 | |
47 | 6, 46 | syl 14 | . . . . . . . . . . 11 |
48 | 47 | eleq2d 2240 | . . . . . . . . . 10 |
49 | 36, 48 | mtbiri 670 | . . . . . . . . 9 |
50 | fsnunfv 5697 | . . . . . . . . 9 | |
51 | 1, 45, 49, 50 | syl3anc 1233 | . . . . . . . 8 |
52 | 51 | adantr 274 | . . . . . . 7 |
53 | simpr 109 | . . . . . . . 8 | |
54 | 53 | fveq2d 5500 | . . . . . . 7 |
55 | reseq2 4886 | . . . . . . . . 9 | |
56 | 55, 38 | sylan9eqr 2225 | . . . . . . . 8 |
57 | 56 | fveq2d 5500 | . . . . . . 7 |
58 | 52, 54, 57 | 3eqtr4d 2213 | . . . . . 6 |
59 | 43, 58 | jaodan 792 | . . . . 5 |
60 | 10, 59 | sylan2b 285 | . . . 4 |
61 | 60 | ralrimiva 2543 | . . 3 |
62 | fneq2 5287 | . . . . 5 | |
63 | raleq 2665 | . . . . 5 | |
64 | 62, 63 | anbi12d 470 | . . . 4 |
65 | 64 | rspcev 2834 | . . 3 |
66 | 3, 8, 61, 65 | syl12anc 1231 | . 2 |
67 | vex 2733 | . . . . . 6 | |
68 | opexg 4213 | . . . . . 6 | |
69 | 67, 45, 68 | sylancr 412 | . . . . 5 |
70 | snexg 4170 | . . . . 5 | |
71 | 69, 70 | syl 14 | . . . 4 |
72 | unexg 4428 | . . . 4 | |
73 | 11, 71, 72 | sylancr 412 | . . 3 |
74 | 4 | tfrlem3ag 6288 | . . 3 |
75 | 73, 74 | syl 14 | . 2 |
76 | 66, 75 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wal 1346 wceq 1348 wcel 2141 cab 2156 wne 2340 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 csn 3583 cop 3586 word 4347 con0 4348 csuc 4350 cdm 4611 cres 4613 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: tfrlemibacc 6305 tfrlemi14d 6312 |
Copyright terms: Public domain | W3C validator |