ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemisucaccv Unicode version

Theorem tfrlemisucaccv 6351
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6358. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemisucfn.3  |-  ( ph  ->  z  e.  On )
tfrlemisucfn.4  |-  ( ph  ->  g  Fn  z )
tfrlemisucfn.5  |-  ( ph  ->  g  e.  A )
Assertion
Ref Expression
tfrlemisucaccv  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A
)
Distinct variable groups:    f, g, x, y, z, A    f, F, g, x, y, z    ph, y
Allowed substitution hints:    ph( x, z, f, g)

Proof of Theorem tfrlemisucaccv
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemisucfn.3 . . . 4  |-  ( ph  ->  z  e.  On )
2 onsuc 4518 . . . 4  |-  ( z  e.  On  ->  suc  z  e.  On )
31, 2syl 14 . . 3  |-  ( ph  ->  suc  z  e.  On )
4 tfrlemisucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
5 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
6 tfrlemisucfn.4 . . . 4  |-  ( ph  ->  g  Fn  z )
7 tfrlemisucfn.5 . . . 4  |-  ( ph  ->  g  e.  A )
84, 5, 1, 6, 7tfrlemisucfn 6350 . . 3  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  suc  z )
9 vex 2755 . . . . . 6  |-  u  e. 
_V
109elsuc 4424 . . . . 5  |-  ( u  e.  suc  z  <->  ( u  e.  z  \/  u  =  z ) )
11 vex 2755 . . . . . . . . . . 11  |-  g  e. 
_V
124, 11tfrlem3a 6336 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. v  e.  On  ( g  Fn  v  /\  A. u  e.  v  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
137, 12sylib 122 . . . . . . . . 9  |-  ( ph  ->  E. v  e.  On  ( g  Fn  v  /\  A. u  e.  v  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
14 simprrr 540 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  A. u  e.  v  ( g `  u )  =  ( F `  ( g  |`  u ) ) )
15 simprrl 539 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  g  Fn  v )
166adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  g  Fn  z )
17 fndmu 5336 . . . . . . . . . . . 12  |-  ( ( g  Fn  v  /\  g  Fn  z )  ->  v  =  z )
1815, 16, 17syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  v  =  z )
1918raleqdv 2692 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  ( A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) )  <->  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
2014, 19mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( v  e.  On  /\  ( g  Fn  v  /\  A. u  e.  v  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )  ->  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )
2113, 20rexlimddv 2612 . . . . . . . 8  |-  ( ph  ->  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )
2221r19.21bi 2578 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  (
g `  u )  =  ( F `  ( g  |`  u
) ) )
23 elirrv 4565 . . . . . . . . . . 11  |-  -.  u  e.  u
24 elequ2 2165 . . . . . . . . . . 11  |-  ( z  =  u  ->  (
u  e.  z  <->  u  e.  u ) )
2523, 24mtbiri 676 . . . . . . . . . 10  |-  ( z  =  u  ->  -.  u  e.  z )
2625necon2ai 2414 . . . . . . . . 9  |-  ( u  e.  z  ->  z  =/=  u )
2726adantl 277 . . . . . . . 8  |-  ( (
ph  /\  u  e.  z )  ->  z  =/=  u )
28 fvunsng 5731 . . . . . . . 8  |-  ( ( u  e.  _V  /\  z  =/=  u )  -> 
( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  u
)  =  ( g `
 u ) )
299, 27, 28sylancr 414 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( g `
 u ) )
30 eloni 4393 . . . . . . . . . . . 12  |-  ( z  e.  On  ->  Ord  z )
311, 30syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Ord  z )
32 ordelss 4397 . . . . . . . . . . 11  |-  ( ( Ord  z  /\  u  e.  z )  ->  u  C_  z )
3331, 32sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  z )  ->  u  C_  z )
34 resabs1 4954 . . . . . . . . . 10  |-  ( u 
C_  z  ->  (
( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  z
)  |`  u )  =  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  u
) )
3533, 34syl 14 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  z )  ->  (
( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  z
)  |`  u )  =  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  u
) )
36 elirrv 4565 . . . . . . . . . . . 12  |-  -.  z  e.  z
37 fsnunres 5739 . . . . . . . . . . . 12  |-  ( ( g  Fn  z  /\  -.  z  e.  z
)  ->  ( (
g  u.  { <. z ,  ( F `  g ) >. } )  |`  z )  =  g )
386, 36, 37sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  z
)  =  g )
3938reseq1d 4924 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  z )  |`  u
)  =  ( g  |`  u ) )
4039adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  z )  ->  (
( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  |`  z
)  |`  u )  =  ( g  |`  u
) )
4135, 40eqtr3d 2224 . . . . . . . 8  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
)  =  ( g  |`  u ) )
4241fveq2d 5538 . . . . . . 7  |-  ( (
ph  /\  u  e.  z )  ->  ( F `  ( (
g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) )  =  ( F `  (
g  |`  u ) ) )
4322, 29, 423eqtr4d 2232 . . . . . 6  |-  ( (
ph  /\  u  e.  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) )
445tfrlem3-2d 6338 . . . . . . . . . 10  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
4544simprd 114 . . . . . . . . 9  |-  ( ph  ->  ( F `  g
)  e.  _V )
46 fndm 5334 . . . . . . . . . . . 12  |-  ( g  Fn  z  ->  dom  g  =  z )
476, 46syl 14 . . . . . . . . . . 11  |-  ( ph  ->  dom  g  =  z )
4847eleq2d 2259 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  dom  g 
<->  z  e.  z ) )
4936, 48mtbiri 676 . . . . . . . . 9  |-  ( ph  ->  -.  z  e.  dom  g )
50 fsnunfv 5738 . . . . . . . . 9  |-  ( ( z  e.  On  /\  ( F `  g )  e.  _V  /\  -.  z  e.  dom  g )  ->  ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 z )  =  ( F `  g
) )
511, 45, 49, 50syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  z
)  =  ( F `
 g ) )
5251adantr 276 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  z
)  =  ( F `
 g ) )
53 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  u  =  z )  ->  u  =  z )
5453fveq2d 5538 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 z ) )
55 reseq2 4920 . . . . . . . . 9  |-  ( u  =  z  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
)  =  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  z ) )
5655, 38sylan9eqr 2244 . . . . . . . 8  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
)  =  g )
5756fveq2d 5538 . . . . . . 7  |-  ( (
ph  /\  u  =  z )  ->  ( F `  ( (
g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) )  =  ( F `  g
) )
5852, 54, 573eqtr4d 2232 . . . . . 6  |-  ( (
ph  /\  u  =  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) )
5943, 58jaodan 798 . . . . 5  |-  ( (
ph  /\  ( u  e.  z  \/  u  =  z ) )  ->  ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) ) )
6010, 59sylan2b 287 . . . 4  |-  ( (
ph  /\  u  e.  suc  z )  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) )
6160ralrimiva 2563 . . 3  |-  ( ph  ->  A. u  e.  suc  z ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) ) )
62 fneq2 5324 . . . . 5  |-  ( w  =  suc  z  -> 
( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  w  <->  ( g  u.  { <. z ,  ( F `  g ) >. } )  Fn  suc  z ) )
63 raleq 2686 . . . . 5  |-  ( w  =  suc  z  -> 
( A. u  e.  w  ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) )  <->  A. u  e.  suc  z ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) ) ) )
6462, 63anbi12d 473 . . . 4  |-  ( w  =  suc  z  -> 
( ( ( g  u.  { <. z ,  ( F `  g ) >. } )  Fn  w  /\  A. u  e.  w  (
( g  u.  { <. z ,  ( F `
 g ) >. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) )  <-> 
( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  suc  z  /\  A. u  e. 
suc  z ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) ) ) ) )
6564rspcev 2856 . . 3  |-  ( ( suc  z  e.  On  /\  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  suc  z  /\  A. u  e. 
suc  z ( ( g  u.  { <. z ,  ( F `  g ) >. } ) `
 u )  =  ( F `  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  |`  u
) ) ) )  ->  E. w  e.  On  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) ) )
663, 8, 61, 65syl12anc 1247 . 2  |-  ( ph  ->  E. w  e.  On  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) ) )
67 vex 2755 . . . . . 6  |-  z  e. 
_V
68 opexg 4246 . . . . . 6  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
6967, 45, 68sylancr 414 . . . . 5  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
70 snexg 4202 . . . . 5  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  { <. z ,  ( F `  g ) >. }  e.  _V )
7169, 70syl 14 . . . 4  |-  ( ph  ->  { <. z ,  ( F `  g )
>. }  e.  _V )
72 unexg 4461 . . . 4  |-  ( ( g  e.  _V  /\  {
<. z ,  ( F `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
7311, 71, 72sylancr 414 . . 3  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
744tfrlem3ag 6335 . . 3  |-  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  e.  _V  ->  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A  <->  E. w  e.  On  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) ) ) )
7573, 74syl 14 . 2  |-  ( ph  ->  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A  <->  E. w  e.  On  (
( g  u.  { <. z ,  ( F `
 g ) >. } )  Fn  w  /\  A. u  e.  w  ( ( g  u. 
{ <. z ,  ( F `  g )
>. } ) `  u
)  =  ( F `
 ( ( g  u.  { <. z ,  ( F `  g ) >. } )  |`  u ) ) ) ) )
7666, 75mpbird 167 1  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2160   {cab 2175    =/= wne 2360   A.wral 2468   E.wrex 2469   _Vcvv 2752    u. cun 3142    C_ wss 3144   {csn 3607   <.cop 3610   Ord word 4380   Oncon0 4381   suc csuc 4383   dom cdm 4644    |` cres 4646   Fun wfun 5229    Fn wfn 5230   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by:  tfrlemibacc  6352  tfrlemi14d  6359
  Copyright terms: Public domain W3C validator