Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemisucaccv | Unicode version |
Description: We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6308. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | |
tfrlemisucfn.2 | |
tfrlemisucfn.3 | |
tfrlemisucfn.4 | |
tfrlemisucfn.5 |
Ref | Expression |
---|---|
tfrlemisucaccv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.3 | . . . 4 | |
2 | suceloni 4483 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | tfrlemisucfn.1 | . . . 4 | |
5 | tfrlemisucfn.2 | . . . 4 | |
6 | tfrlemisucfn.4 | . . . 4 | |
7 | tfrlemisucfn.5 | . . . 4 | |
8 | 4, 5, 1, 6, 7 | tfrlemisucfn 6300 | . . 3 |
9 | vex 2733 | . . . . . 6 | |
10 | 9 | elsuc 4389 | . . . . 5 |
11 | vex 2733 | . . . . . . . . . . 11 | |
12 | 4, 11 | tfrlem3a 6286 | . . . . . . . . . 10 |
13 | 7, 12 | sylib 121 | . . . . . . . . 9 |
14 | simprrr 535 | . . . . . . . . . 10 | |
15 | simprrl 534 | . . . . . . . . . . . 12 | |
16 | 6 | adantr 274 | . . . . . . . . . . . 12 |
17 | fndmu 5297 | . . . . . . . . . . . 12 | |
18 | 15, 16, 17 | syl2anc 409 | . . . . . . . . . . 11 |
19 | 18 | raleqdv 2671 | . . . . . . . . . 10 |
20 | 14, 19 | mpbid 146 | . . . . . . . . 9 |
21 | 13, 20 | rexlimddv 2592 | . . . . . . . 8 |
22 | 21 | r19.21bi 2558 | . . . . . . 7 |
23 | elirrv 4530 | . . . . . . . . . . 11 | |
24 | elequ2 2146 | . . . . . . . . . . 11 | |
25 | 23, 24 | mtbiri 670 | . . . . . . . . . 10 |
26 | 25 | necon2ai 2394 | . . . . . . . . 9 |
27 | 26 | adantl 275 | . . . . . . . 8 |
28 | fvunsng 5687 | . . . . . . . 8 | |
29 | 9, 27, 28 | sylancr 412 | . . . . . . 7 |
30 | eloni 4358 | . . . . . . . . . . . 12 | |
31 | 1, 30 | syl 14 | . . . . . . . . . . 11 |
32 | ordelss 4362 | . . . . . . . . . . 11 | |
33 | 31, 32 | sylan 281 | . . . . . . . . . 10 |
34 | resabs1 4918 | . . . . . . . . . 10 | |
35 | 33, 34 | syl 14 | . . . . . . . . 9 |
36 | elirrv 4530 | . . . . . . . . . . . 12 | |
37 | fsnunres 5695 | . . . . . . . . . . . 12 | |
38 | 6, 36, 37 | sylancl 411 | . . . . . . . . . . 11 |
39 | 38 | reseq1d 4888 | . . . . . . . . . 10 |
40 | 39 | adantr 274 | . . . . . . . . 9 |
41 | 35, 40 | eqtr3d 2205 | . . . . . . . 8 |
42 | 41 | fveq2d 5498 | . . . . . . 7 |
43 | 22, 29, 42 | 3eqtr4d 2213 | . . . . . 6 |
44 | 5 | tfrlem3-2d 6288 | . . . . . . . . . 10 |
45 | 44 | simprd 113 | . . . . . . . . 9 |
46 | fndm 5295 | . . . . . . . . . . . 12 | |
47 | 6, 46 | syl 14 | . . . . . . . . . . 11 |
48 | 47 | eleq2d 2240 | . . . . . . . . . 10 |
49 | 36, 48 | mtbiri 670 | . . . . . . . . 9 |
50 | fsnunfv 5694 | . . . . . . . . 9 | |
51 | 1, 45, 49, 50 | syl3anc 1233 | . . . . . . . 8 |
52 | 51 | adantr 274 | . . . . . . 7 |
53 | simpr 109 | . . . . . . . 8 | |
54 | 53 | fveq2d 5498 | . . . . . . 7 |
55 | reseq2 4884 | . . . . . . . . 9 | |
56 | 55, 38 | sylan9eqr 2225 | . . . . . . . 8 |
57 | 56 | fveq2d 5498 | . . . . . . 7 |
58 | 52, 54, 57 | 3eqtr4d 2213 | . . . . . 6 |
59 | 43, 58 | jaodan 792 | . . . . 5 |
60 | 10, 59 | sylan2b 285 | . . . 4 |
61 | 60 | ralrimiva 2543 | . . 3 |
62 | fneq2 5285 | . . . . 5 | |
63 | raleq 2665 | . . . . 5 | |
64 | 62, 63 | anbi12d 470 | . . . 4 |
65 | 64 | rspcev 2834 | . . 3 |
66 | 3, 8, 61, 65 | syl12anc 1231 | . 2 |
67 | vex 2733 | . . . . . 6 | |
68 | opexg 4211 | . . . . . 6 | |
69 | 67, 45, 68 | sylancr 412 | . . . . 5 |
70 | snexg 4168 | . . . . 5 | |
71 | 69, 70 | syl 14 | . . . 4 |
72 | unexg 4426 | . . . 4 | |
73 | 11, 71, 72 | sylancr 412 | . . 3 |
74 | 4 | tfrlem3ag 6285 | . . 3 |
75 | 73, 74 | syl 14 | . 2 |
76 | 66, 75 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wal 1346 wceq 1348 wcel 2141 cab 2156 wne 2340 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 csn 3581 cop 3584 word 4345 con0 4346 csuc 4348 cdm 4609 cres 4611 wfun 5190 wfn 5191 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 |
This theorem is referenced by: tfrlemibacc 6302 tfrlemi14d 6309 |
Copyright terms: Public domain | W3C validator |