![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndmu | GIF version |
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
fndmu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5315 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | fndm 5315 | . 2 ⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) | |
3 | 1, 2 | sylan9req 2231 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 dom cdm 4626 Fn wfn 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-fn 5219 |
This theorem is referenced by: fodmrnu 5446 tfrlemisucaccv 6325 tfr1onlemsucaccv 6341 tfrcllemsucaccv 6354 0fz1 10044 |
Copyright terms: Public domain | W3C validator |