ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmu GIF version

Theorem fndmu 5289
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
fndmu ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)

Proof of Theorem fndmu
StepHypRef Expression
1 fndm 5287 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 fndm 5287 . 2 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
31, 2sylan9req 2220 1 ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  dom cdm 4604   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-fn 5191
This theorem is referenced by:  fodmrnu  5418  tfrlemisucaccv  6293  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322  0fz1  9980
  Copyright terms: Public domain W3C validator