ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmu GIF version

Theorem fndmu 5386
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
fndmu ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)

Proof of Theorem fndmu
StepHypRef Expression
1 fndm 5382 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 fndm 5382 . 2 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
31, 2sylan9req 2260 1 ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  dom cdm 4683   Fn wfn 5275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-fn 5283
This theorem is referenced by:  fodmrnu  5518  tfrlemisucaccv  6424  tfr1onlemsucaccv  6440  tfrcllemsucaccv  6453  0fz1  10187  lmodfopnelem1  14161
  Copyright terms: Public domain W3C validator