Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndmu | GIF version |
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
fndmu | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5287 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | fndm 5287 | . 2 ⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) | |
3 | 1, 2 | sylan9req 2220 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐹 Fn 𝐵) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 dom cdm 4604 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-fn 5191 |
This theorem is referenced by: fodmrnu 5418 tfrlemisucaccv 6293 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 0fz1 9980 |
Copyright terms: Public domain | W3C validator |