ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 Unicode version

Theorem lmodfopnelem1 13414
Description: Lemma 1 for lmodfopne 13416. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
Assertion
Ref Expression
lmodfopnelem1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )

Proof of Theorem lmodfopnelem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4  |-  V  =  ( Base `  W
)
2 lmodfopne.a . . . 4  |-  .+  =  ( +f `  W
)
31, 2plusffng 12784 . . 3  |-  ( W  e.  LMod  ->  .+  Fn  ( V  X.  V
) )
4 lmodfopne.s . . . 4  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . 4  |-  K  =  ( Base `  S
)
6 lmodfopne.t . . . 4  |-  .x.  =  ( .sf `  W
)
71, 4, 5, 6scaffng 13399 . . 3  |-  ( W  e.  LMod  ->  .x.  Fn  ( K  X.  V
) )
8 fneq1 5305 . . . . . . . . . 10  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  <->  .x.  Fn  ( V  X.  V ) ) )
9 fndmu 5318 . . . . . . . . . . 11  |-  ( ( 
.x.  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( V  X.  V )  =  ( K  X.  V
) )
109ex 115 . . . . . . . . . 10  |-  (  .x.  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) )
118, 10biimtrdi 163 . . . . . . . . 9  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1211com13 80 . . . . . . . 8  |-  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1312impcom 125 . . . . . . 7  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V
) ) )
14 lmodgrp 13384 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Grp )
15 eqid 2177 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
161, 15grpidcl 12904 . . . . . . . . . . 11  |-  ( W  e.  Grp  ->  ( 0g `  W )  e.  V )
17 elex2 2754 . . . . . . . . . . 11  |-  ( ( 0g `  W )  e.  V  ->  E. w  w  e.  V )
1814, 16, 173syl 17 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  E. w  w  e.  V )
19 xp11m 5068 . . . . . . . . . 10  |-  ( ( E. w  w  e.  V  /\  E. w  w  e.  V )  ->  ( ( V  X.  V )  =  ( K  X.  V )  <-> 
( V  =  K  /\  V  =  V ) ) )
2018, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( ( V  X.  V )  =  ( K  X.  V )  <->  ( V  =  K  /\  V  =  V ) ) )
2120simprbda 383 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( V  X.  V )  =  ( K  X.  V
) )  ->  V  =  K )
2221expcom 116 . . . . . . 7  |-  ( ( V  X.  V )  =  ( K  X.  V )  ->  ( W  e.  LMod  ->  V  =  K ) )
2313, 22syl6 33 . . . . . 6  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( W  e.  LMod  ->  V  =  K ) ) )
2423com23 78 . . . . 5  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) )
2524ex 115 . . . 4  |-  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
2625com3r 79 . . 3  |-  ( W  e.  LMod  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
273, 7, 26mp2d 47 . 2  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) )
2827imp 124 1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    X. cxp 4625    Fn wfn 5212   ` cfv 5217   Basecbs 12462  Scalarcsca 12539   0gc0g 12705   +fcplusf 12772   Grpcgrp 12877   LModclmod 13377   .sfcscaf 13378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-plusf 12774  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-lmod 13379  df-scaf 13380
This theorem is referenced by:  lmodfopnelem2  13415
  Copyright terms: Public domain W3C validator