| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | Unicode version | ||
| Description: Lemma 1 for lmodfopne 14121. (Contributed by AV, 2-Oct-2021.) |
| Ref | Expression |
|---|---|
| lmodfopne.t |
|
| lmodfopne.a |
|
| lmodfopne.v |
|
| lmodfopne.s |
|
| lmodfopne.k |
|
| Ref | Expression |
|---|---|
| lmodfopnelem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.v |
. . . 4
| |
| 2 | lmodfopne.a |
. . . 4
| |
| 3 | 1, 2 | plusffng 13230 |
. . 3
|
| 4 | lmodfopne.s |
. . . 4
| |
| 5 | lmodfopne.k |
. . . 4
| |
| 6 | lmodfopne.t |
. . . 4
| |
| 7 | 1, 4, 5, 6 | scaffng 14104 |
. . 3
|
| 8 | fneq1 5363 |
. . . . . . . . . 10
| |
| 9 | fndmu 5378 |
. . . . . . . . . . 11
| |
| 10 | 9 | ex 115 |
. . . . . . . . . 10
|
| 11 | 8, 10 | biimtrdi 163 |
. . . . . . . . 9
|
| 12 | 11 | com13 80 |
. . . . . . . 8
|
| 13 | 12 | impcom 125 |
. . . . . . 7
|
| 14 | lmodgrp 14089 |
. . . . . . . . . . 11
| |
| 15 | eqid 2205 |
. . . . . . . . . . . 12
| |
| 16 | 1, 15 | grpidcl 13394 |
. . . . . . . . . . 11
|
| 17 | elex2 2788 |
. . . . . . . . . . 11
| |
| 18 | 14, 16, 17 | 3syl 17 |
. . . . . . . . . 10
|
| 19 | xp11m 5122 |
. . . . . . . . . 10
| |
| 20 | 18, 18, 19 | syl2anc 411 |
. . . . . . . . 9
|
| 21 | 20 | simprbda 383 |
. . . . . . . 8
|
| 22 | 21 | expcom 116 |
. . . . . . 7
|
| 23 | 13, 22 | syl6 33 |
. . . . . 6
|
| 24 | 23 | com23 78 |
. . . . 5
|
| 25 | 24 | ex 115 |
. . . 4
|
| 26 | 25 | com3r 79 |
. . 3
|
| 27 | 3, 7, 26 | mp2d 47 |
. 2
|
| 28 | 27 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-mulr 12956 df-sca 12958 df-vsca 12959 df-0g 13123 df-plusf 13220 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-lmod 14084 df-scaf 14085 |
| This theorem is referenced by: lmodfopnelem2 14120 |
| Copyright terms: Public domain | W3C validator |