| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lmodfopnelem1 | Unicode version | ||
| Description: Lemma 1 for lmodfopne 13882. (Contributed by AV, 2-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| lmodfopne.t | 
 | 
| lmodfopne.a | 
 | 
| lmodfopne.v | 
 | 
| lmodfopne.s | 
 | 
| lmodfopne.k | 
 | 
| Ref | Expression | 
|---|---|
| lmodfopnelem1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmodfopne.v | 
. . . 4
 | |
| 2 | lmodfopne.a | 
. . . 4
 | |
| 3 | 1, 2 | plusffng 13008 | 
. . 3
 | 
| 4 | lmodfopne.s | 
. . . 4
 | |
| 5 | lmodfopne.k | 
. . . 4
 | |
| 6 | lmodfopne.t | 
. . . 4
 | |
| 7 | 1, 4, 5, 6 | scaffng 13865 | 
. . 3
 | 
| 8 | fneq1 5346 | 
. . . . . . . . . 10
 | |
| 9 | fndmu 5359 | 
. . . . . . . . . . 11
 | |
| 10 | 9 | ex 115 | 
. . . . . . . . . 10
 | 
| 11 | 8, 10 | biimtrdi 163 | 
. . . . . . . . 9
 | 
| 12 | 11 | com13 80 | 
. . . . . . . 8
 | 
| 13 | 12 | impcom 125 | 
. . . . . . 7
 | 
| 14 | lmodgrp 13850 | 
. . . . . . . . . . 11
 | |
| 15 | eqid 2196 | 
. . . . . . . . . . . 12
 | |
| 16 | 1, 15 | grpidcl 13161 | 
. . . . . . . . . . 11
 | 
| 17 | elex2 2779 | 
. . . . . . . . . . 11
 | |
| 18 | 14, 16, 17 | 3syl 17 | 
. . . . . . . . . 10
 | 
| 19 | xp11m 5108 | 
. . . . . . . . . 10
 | |
| 20 | 18, 18, 19 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 21 | 20 | simprbda 383 | 
. . . . . . . 8
 | 
| 22 | 21 | expcom 116 | 
. . . . . . 7
 | 
| 23 | 13, 22 | syl6 33 | 
. . . . . 6
 | 
| 24 | 23 | com23 78 | 
. . . . 5
 | 
| 25 | 24 | ex 115 | 
. . . 4
 | 
| 26 | 25 | com3r 79 | 
. . 3
 | 
| 27 | 3, 7, 26 | mp2d 47 | 
. 2
 | 
| 28 | 27 | imp 124 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-plusf 12998 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-lmod 13845 df-scaf 13846 | 
| This theorem is referenced by: lmodfopnelem2 13881 | 
| Copyright terms: Public domain | W3C validator |