ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 Unicode version

Theorem lmodfopnelem1 14119
Description: Lemma 1 for lmodfopne 14121. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
Assertion
Ref Expression
lmodfopnelem1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )

Proof of Theorem lmodfopnelem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4  |-  V  =  ( Base `  W
)
2 lmodfopne.a . . . 4  |-  .+  =  ( +f `  W
)
31, 2plusffng 13230 . . 3  |-  ( W  e.  LMod  ->  .+  Fn  ( V  X.  V
) )
4 lmodfopne.s . . . 4  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . 4  |-  K  =  ( Base `  S
)
6 lmodfopne.t . . . 4  |-  .x.  =  ( .sf `  W
)
71, 4, 5, 6scaffng 14104 . . 3  |-  ( W  e.  LMod  ->  .x.  Fn  ( K  X.  V
) )
8 fneq1 5363 . . . . . . . . . 10  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  <->  .x.  Fn  ( V  X.  V ) ) )
9 fndmu 5378 . . . . . . . . . . 11  |-  ( ( 
.x.  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( V  X.  V )  =  ( K  X.  V
) )
109ex 115 . . . . . . . . . 10  |-  (  .x.  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) )
118, 10biimtrdi 163 . . . . . . . . 9  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1211com13 80 . . . . . . . 8  |-  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1312impcom 125 . . . . . . 7  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V
) ) )
14 lmodgrp 14089 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Grp )
15 eqid 2205 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
161, 15grpidcl 13394 . . . . . . . . . . 11  |-  ( W  e.  Grp  ->  ( 0g `  W )  e.  V )
17 elex2 2788 . . . . . . . . . . 11  |-  ( ( 0g `  W )  e.  V  ->  E. w  w  e.  V )
1814, 16, 173syl 17 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  E. w  w  e.  V )
19 xp11m 5122 . . . . . . . . . 10  |-  ( ( E. w  w  e.  V  /\  E. w  w  e.  V )  ->  ( ( V  X.  V )  =  ( K  X.  V )  <-> 
( V  =  K  /\  V  =  V ) ) )
2018, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( ( V  X.  V )  =  ( K  X.  V )  <->  ( V  =  K  /\  V  =  V ) ) )
2120simprbda 383 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( V  X.  V )  =  ( K  X.  V
) )  ->  V  =  K )
2221expcom 116 . . . . . . 7  |-  ( ( V  X.  V )  =  ( K  X.  V )  ->  ( W  e.  LMod  ->  V  =  K ) )
2313, 22syl6 33 . . . . . 6  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( W  e.  LMod  ->  V  =  K ) ) )
2423com23 78 . . . . 5  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) )
2524ex 115 . . . 4  |-  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
2625com3r 79 . . 3  |-  ( W  e.  LMod  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
273, 7, 26mp2d 47 . 2  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) )
2827imp 124 1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176    X. cxp 4674    Fn wfn 5267   ` cfv 5272   Basecbs 12865  Scalarcsca 12945   0gc0g 13121   +fcplusf 13218   Grpcgrp 13365   LModclmod 14082   .sfcscaf 14083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-mulr 12956  df-sca 12958  df-vsca 12959  df-0g 13123  df-plusf 13220  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-lmod 14084  df-scaf 14085
This theorem is referenced by:  lmodfopnelem2  14120
  Copyright terms: Public domain W3C validator