ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodfopnelem1 Unicode version

Theorem lmodfopnelem1 13956
Description: Lemma 1 for lmodfopne 13958. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t  |-  .x.  =  ( .sf `  W
)
lmodfopne.a  |-  .+  =  ( +f `  W
)
lmodfopne.v  |-  V  =  ( Base `  W
)
lmodfopne.s  |-  S  =  (Scalar `  W )
lmodfopne.k  |-  K  =  ( Base `  S
)
Assertion
Ref Expression
lmodfopnelem1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )

Proof of Theorem lmodfopnelem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lmodfopne.v . . . 4  |-  V  =  ( Base `  W
)
2 lmodfopne.a . . . 4  |-  .+  =  ( +f `  W
)
31, 2plusffng 13067 . . 3  |-  ( W  e.  LMod  ->  .+  Fn  ( V  X.  V
) )
4 lmodfopne.s . . . 4  |-  S  =  (Scalar `  W )
5 lmodfopne.k . . . 4  |-  K  =  ( Base `  S
)
6 lmodfopne.t . . . 4  |-  .x.  =  ( .sf `  W
)
71, 4, 5, 6scaffng 13941 . . 3  |-  ( W  e.  LMod  ->  .x.  Fn  ( K  X.  V
) )
8 fneq1 5347 . . . . . . . . . 10  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  <->  .x.  Fn  ( V  X.  V ) ) )
9 fndmu 5362 . . . . . . . . . . 11  |-  ( ( 
.x.  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( V  X.  V )  =  ( K  X.  V
) )
109ex 115 . . . . . . . . . 10  |-  (  .x.  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) )
118, 10biimtrdi 163 . . . . . . . . 9  |-  (  .+  =  .x.  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1211com13 80 . . . . . . . 8  |-  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V ) ) ) )
1312impcom 125 . . . . . . 7  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( V  X.  V )  =  ( K  X.  V
) ) )
14 lmodgrp 13926 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Grp )
15 eqid 2196 . . . . . . . . . . . 12  |-  ( 0g
`  W )  =  ( 0g `  W
)
161, 15grpidcl 13231 . . . . . . . . . . 11  |-  ( W  e.  Grp  ->  ( 0g `  W )  e.  V )
17 elex2 2779 . . . . . . . . . . 11  |-  ( ( 0g `  W )  e.  V  ->  E. w  w  e.  V )
1814, 16, 173syl 17 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  E. w  w  e.  V )
19 xp11m 5109 . . . . . . . . . 10  |-  ( ( E. w  w  e.  V  /\  E. w  w  e.  V )  ->  ( ( V  X.  V )  =  ( K  X.  V )  <-> 
( V  =  K  /\  V  =  V ) ) )
2018, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( ( V  X.  V )  =  ( K  X.  V )  <->  ( V  =  K  /\  V  =  V ) ) )
2120simprbda 383 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( V  X.  V )  =  ( K  X.  V
) )  ->  V  =  K )
2221expcom 116 . . . . . . 7  |-  ( ( V  X.  V )  =  ( K  X.  V )  ->  ( W  e.  LMod  ->  V  =  K ) )
2313, 22syl6 33 . . . . . 6  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  (  .+  =  .x.  ->  ( W  e.  LMod  ->  V  =  K ) ) )
2423com23 78 . . . . 5  |-  ( ( 
.+  Fn  ( V  X.  V )  /\  .x.  Fn  ( K  X.  V
) )  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) )
2524ex 115 . . . 4  |-  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
2625com3r 79 . . 3  |-  ( W  e.  LMod  ->  (  .+  Fn  ( V  X.  V
)  ->  (  .x.  Fn  ( K  X.  V
)  ->  (  .+  =  .x.  ->  V  =  K ) ) ) )
273, 7, 26mp2d 47 . 2  |-  ( W  e.  LMod  ->  (  .+  =  .x.  ->  V  =  K ) )
2827imp 124 1  |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167    X. cxp 4662    Fn wfn 5254   ` cfv 5259   Basecbs 12703  Scalarcsca 12783   0gc0g 12958   +fcplusf 13055   Grpcgrp 13202   LModclmod 13919   .sfcscaf 13920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-plusf 13057  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-lmod 13921  df-scaf 13922
This theorem is referenced by:  lmodfopnelem2  13957
  Copyright terms: Public domain W3C validator