Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9req | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | |
sylan9req.2 |
Ref | Expression |
---|---|
sylan9req |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 | |
2 | 1 | eqcomd 2171 | . 2 |
3 | sylan9req.2 | . 2 | |
4 | 2, 3 | sylan9eq 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: fndmu 5289 fodmrnu 5418 funcoeqres 5463 fvunsng 5679 prarloclem5 7441 addlocprlemeq 7474 zdiv 9279 resqrexlemnm 10960 fprodssdc 11531 dvdsmulc 11759 cncongrcoprm 12038 mgmidmo 12603 lgsmodeq 13586 |
Copyright terms: Public domain | W3C validator |