| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9req | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 |
|
| sylan9req.2 |
|
| Ref | Expression |
|---|---|
| sylan9req |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 |
. . 3
| |
| 2 | 1 | eqcomd 2212 |
. 2
|
| 3 | sylan9req.2 |
. 2
| |
| 4 | 2, 3 | sylan9eq 2259 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: fndmu 5386 fodmrnu 5518 funcoeqres 5565 fvunsng 5791 prarloclem5 7633 addlocprlemeq 7666 zdiv 9481 resqrexlemnm 11404 fprodssdc 11976 dvdsmulc 12205 cncongrcoprm 12503 mgmidmo 13279 lgsmodeq 15597 |
| Copyright terms: Public domain | W3C validator |