ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9req Unicode version

Theorem sylan9req 2250
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.)
Hypotheses
Ref Expression
sylan9req.1  |-  ( ph  ->  B  =  A )
sylan9req.2  |-  ( ps 
->  B  =  C
)
Assertion
Ref Expression
sylan9req  |-  ( (
ph  /\  ps )  ->  A  =  C )

Proof of Theorem sylan9req
StepHypRef Expression
1 sylan9req.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2202 . 2  |-  ( ph  ->  A  =  B )
3 sylan9req.2 . 2  |-  ( ps 
->  B  =  C
)
42, 3sylan9eq 2249 1  |-  ( (
ph  /\  ps )  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  fndmu  5362  fodmrnu  5491  funcoeqres  5538  fvunsng  5759  prarloclem5  7584  addlocprlemeq  7617  zdiv  9431  resqrexlemnm  11200  fprodssdc  11772  dvdsmulc  12001  cncongrcoprm  12299  mgmidmo  13074  lgsmodeq  15370
  Copyright terms: Public domain W3C validator