Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > forn | Unicode version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5202 | . 2 | |
2 | 1 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 crn 4610 wfn 5191 wfo 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fo 5202 |
This theorem is referenced by: dffo2 5422 foima 5423 fodmrnu 5426 f1imacnv 5457 foimacnv 5458 foun 5459 resdif 5462 fococnv2 5466 cbvfo 5762 cbvexfo 5763 isoini 5795 isoselem 5797 canth 5805 f1opw2 6053 fornex 6092 bren 6723 en1 6775 fopwdom 6812 mapen 6822 ssenen 6827 phplem4 6831 phplem4on 6843 ordiso2 7010 djuunr 7041 focdmex 10714 hashfacen 10764 ennnfonelemrn 12367 hmeontr 13072 |
Copyright terms: Public domain | W3C validator |