| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | Unicode version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5324 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5324 |
| This theorem is referenced by: dffo2 5552 foima 5553 fodmrnu 5556 f1imacnv 5589 foimacnv 5590 foun 5591 resdif 5594 fococnv2 5598 foelcdmi 5686 cbvfo 5909 cbvexfo 5910 isoini 5942 isoselem 5944 canth 5952 f1opw2 6212 focdmex 6260 bren 6895 en1 6951 fopwdom 6997 mapen 7007 ssenen 7012 phplem4 7016 phplem4on 7029 ordiso2 7202 djuunr 7233 hashfacen 11058 ennnfonelemrn 12990 imasival 13339 imasaddfnlemg 13347 xpsfrn 13383 imasmnd2 13485 imasgrp2 13647 imasrng 13919 imasring 14027 znf1o 14615 znleval 14617 znunit 14623 hmeontr 14987 fsumdvdsmul 15665 |
| Copyright terms: Public domain | W3C validator |