| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | Unicode version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5278 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5278 |
| This theorem is referenced by: dffo2 5504 foima 5505 fodmrnu 5508 f1imacnv 5541 foimacnv 5542 foun 5543 resdif 5546 fococnv2 5550 foelcdmi 5633 cbvfo 5856 cbvexfo 5857 isoini 5889 isoselem 5891 canth 5899 f1opw2 6154 focdmex 6202 bren 6837 en1 6893 fopwdom 6935 mapen 6945 ssenen 6950 phplem4 6954 phplem4on 6966 ordiso2 7139 djuunr 7170 hashfacen 10983 ennnfonelemrn 12823 imasival 13171 imasaddfnlemg 13179 xpsfrn 13215 imasmnd2 13317 imasgrp2 13479 imasrng 13751 imasring 13859 znf1o 14446 znleval 14448 znunit 14454 hmeontr 14818 fsumdvdsmul 15496 |
| Copyright terms: Public domain | W3C validator |