| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | Unicode version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5265 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5265 |
| This theorem is referenced by: dffo2 5485 foima 5486 fodmrnu 5489 f1imacnv 5522 foimacnv 5523 foun 5524 resdif 5527 fococnv2 5531 foelcdmi 5614 cbvfo 5833 cbvexfo 5834 isoini 5866 isoselem 5868 canth 5876 f1opw2 6130 focdmex 6173 bren 6807 en1 6859 fopwdom 6898 mapen 6908 ssenen 6913 phplem4 6917 phplem4on 6929 ordiso2 7102 djuunr 7133 hashfacen 10930 ennnfonelemrn 12646 imasival 12959 imasaddfnlemg 12967 xpsfrn 13003 imasgrp2 13250 imasrng 13522 imasring 13630 znf1o 14217 znleval 14219 znunit 14225 hmeontr 14559 fsumdvdsmul 15237 |
| Copyright terms: Public domain | W3C validator |