Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > forn | Unicode version |
Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
forn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 5194 | . 2 | |
2 | 1 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 crn 4605 wfn 5183 wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fo 5194 |
This theorem is referenced by: dffo2 5414 foima 5415 fodmrnu 5418 f1imacnv 5449 foimacnv 5450 foun 5451 resdif 5454 fococnv2 5458 cbvfo 5753 cbvexfo 5754 isoini 5786 isoselem 5788 canth 5796 f1opw2 6044 fornex 6083 bren 6713 en1 6765 fopwdom 6802 mapen 6812 ssenen 6817 phplem4 6821 phplem4on 6833 ordiso2 7000 djuunr 7031 focdmex 10700 hashfacen 10749 ennnfonelemrn 12352 hmeontr 12953 |
Copyright terms: Public domain | W3C validator |