| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | Unicode version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5277 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5277 |
| This theorem is referenced by: dffo2 5502 foima 5503 fodmrnu 5506 f1imacnv 5539 foimacnv 5540 foun 5541 resdif 5544 fococnv2 5548 foelcdmi 5631 cbvfo 5854 cbvexfo 5855 isoini 5887 isoselem 5889 canth 5897 f1opw2 6152 focdmex 6200 bren 6835 en1 6891 fopwdom 6933 mapen 6943 ssenen 6948 phplem4 6952 phplem4on 6964 ordiso2 7137 djuunr 7168 hashfacen 10981 ennnfonelemrn 12790 imasival 13138 imasaddfnlemg 13146 xpsfrn 13182 imasmnd2 13284 imasgrp2 13446 imasrng 13718 imasring 13826 znf1o 14413 znleval 14415 znunit 14421 hmeontr 14785 fsumdvdsmul 15463 |
| Copyright terms: Public domain | W3C validator |