| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > forn | Unicode version | ||
| Description: The codomain of an onto function is its range. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| forn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fo 5296 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fo 5296 |
| This theorem is referenced by: dffo2 5524 foima 5525 fodmrnu 5528 f1imacnv 5561 foimacnv 5562 foun 5563 resdif 5566 fococnv2 5570 foelcdmi 5654 cbvfo 5877 cbvexfo 5878 isoini 5910 isoselem 5912 canth 5920 f1opw2 6175 focdmex 6223 bren 6858 en1 6914 fopwdom 6958 mapen 6968 ssenen 6973 phplem4 6977 phplem4on 6990 ordiso2 7163 djuunr 7194 hashfacen 11018 ennnfonelemrn 12905 imasival 13253 imasaddfnlemg 13261 xpsfrn 13297 imasmnd2 13399 imasgrp2 13561 imasrng 13833 imasring 13941 znf1o 14528 znleval 14530 znunit 14536 hmeontr 14900 fsumdvdsmul 15578 |
| Copyright terms: Public domain | W3C validator |