Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fofn | Unicode version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5430 | . 2 | |
2 | ffn 5357 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wfn 5203 wf 5204 wfo 5206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 df-f 5212 df-fo 5214 |
This theorem is referenced by: fodmrnu 5438 foun 5472 fo00 5489 foelcdmi 5560 foima2 5743 cbvfo 5776 cbvexfo 5777 foeqcnvco 5781 canth 5819 1stcof 6154 2ndcof 6155 1stexg 6158 2ndexg 6159 df1st2 6210 df2nd2 6211 1stconst 6212 2ndconst 6213 fidcenumlemrks 6942 fidcenumlemr 6944 ctm 7098 suplocexprlemell 7687 ennnfonelemhf1o 12379 ennnfonelemrn 12385 upxp 13341 uptx 13343 cnmpt1st 13357 cnmpt2nd 13358 pw1nct 14311 |
Copyright terms: Public domain | W3C validator |