| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | Unicode version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5500 |
. 2
| |
| 2 | ffn 5427 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5276 df-fo 5278 |
| This theorem is referenced by: fodmrnu 5508 foun 5543 fo00 5560 foelcdmi 5633 foima2 5822 cbvfo 5856 cbvexfo 5857 foeqcnvco 5861 canth 5899 1stcof 6251 2ndcof 6252 1stexg 6255 2ndexg 6256 df1st2 6307 df2nd2 6308 1stconst 6309 2ndconst 6310 fidcenumlemrks 7057 fidcenumlemr 7059 ctm 7213 suplocexprlemell 7828 ennnfonelemhf1o 12817 ennnfonelemrn 12823 imasaddfnlemg 13179 imasmnd2 13317 imasgrp2 13479 imasrng 13751 imasring 13859 znf1o 14446 upxp 14777 uptx 14779 cnmpt1st 14793 cnmpt2nd 14794 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |