| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | Unicode version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5520 |
. 2
| |
| 2 | ffn 5445 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-f 5294 df-fo 5296 |
| This theorem is referenced by: fodmrnu 5528 foun 5563 fo00 5581 foelcdmi 5654 foima2 5843 cbvfo 5877 cbvexfo 5878 foeqcnvco 5882 canth 5920 1stcof 6272 2ndcof 6273 1stexg 6276 2ndexg 6277 df1st2 6328 df2nd2 6329 1stconst 6330 2ndconst 6331 fidcenumlemrks 7081 fidcenumlemr 7083 ctm 7237 suplocexprlemell 7861 ennnfonelemhf1o 12899 ennnfonelemrn 12905 imasaddfnlemg 13261 imasmnd2 13399 imasgrp2 13561 imasrng 13833 imasring 13941 znf1o 14528 upxp 14859 uptx 14861 cnmpt1st 14875 cnmpt2nd 14876 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |