![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fofn | Unicode version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 5477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ffn 5404 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 df-f 5259 df-fo 5261 |
This theorem is referenced by: fodmrnu 5485 foun 5520 fo00 5537 foelcdmi 5610 foima2 5795 cbvfo 5829 cbvexfo 5830 foeqcnvco 5834 canth 5872 1stcof 6218 2ndcof 6219 1stexg 6222 2ndexg 6223 df1st2 6274 df2nd2 6275 1stconst 6276 2ndconst 6277 fidcenumlemrks 7014 fidcenumlemr 7016 ctm 7170 suplocexprlemell 7775 ennnfonelemhf1o 12573 ennnfonelemrn 12579 imasaddfnlemg 12900 imasgrp2 13183 imasrng 13455 imasring 13563 znf1o 14150 upxp 14451 uptx 14453 cnmpt1st 14467 cnmpt2nd 14468 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |