| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fofn | Unicode version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| fofn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fof 5480 | 
. 2
 | |
| 2 | ffn 5407 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-fo 5264 | 
| This theorem is referenced by: fodmrnu 5488 foun 5523 fo00 5540 foelcdmi 5613 foima2 5798 cbvfo 5832 cbvexfo 5833 foeqcnvco 5837 canth 5875 1stcof 6221 2ndcof 6222 1stexg 6225 2ndexg 6226 df1st2 6277 df2nd2 6278 1stconst 6279 2ndconst 6280 fidcenumlemrks 7019 fidcenumlemr 7021 ctm 7175 suplocexprlemell 7780 ennnfonelemhf1o 12630 ennnfonelemrn 12636 imasaddfnlemg 12957 imasgrp2 13240 imasrng 13512 imasring 13620 znf1o 14207 upxp 14508 uptx 14510 cnmpt1st 14524 cnmpt2nd 14525 pw1nct 15647 | 
| Copyright terms: Public domain | W3C validator |