| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | Unicode version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5498 |
. 2
| |
| 2 | ffn 5425 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-f 5275 df-fo 5277 |
| This theorem is referenced by: fodmrnu 5506 foun 5541 fo00 5558 foelcdmi 5631 foima2 5820 cbvfo 5854 cbvexfo 5855 foeqcnvco 5859 canth 5897 1stcof 6249 2ndcof 6250 1stexg 6253 2ndexg 6254 df1st2 6305 df2nd2 6306 1stconst 6307 2ndconst 6308 fidcenumlemrks 7055 fidcenumlemr 7057 ctm 7211 suplocexprlemell 7826 ennnfonelemhf1o 12784 ennnfonelemrn 12790 imasaddfnlemg 13146 imasmnd2 13284 imasgrp2 13446 imasrng 13718 imasring 13826 znf1o 14413 upxp 14744 uptx 14746 cnmpt1st 14760 cnmpt2nd 14761 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |