| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fofn | Unicode version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 5548 |
. 2
| |
| 2 | ffn 5473 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5322 df-fo 5324 |
| This theorem is referenced by: fodmrnu 5556 foun 5591 fo00 5609 foelcdmi 5686 foima2 5875 cbvfo 5909 cbvexfo 5910 foeqcnvco 5914 canth 5952 1stcof 6309 2ndcof 6310 1stexg 6313 2ndexg 6314 df1st2 6365 df2nd2 6366 1stconst 6367 2ndconst 6368 fidcenumlemrks 7120 fidcenumlemr 7122 ctm 7276 suplocexprlemell 7900 ennnfonelemhf1o 12984 ennnfonelemrn 12990 imasaddfnlemg 13347 imasmnd2 13485 imasgrp2 13647 imasrng 13919 imasring 14027 znf1o 14615 upxp 14946 uptx 14948 cnmpt1st 14962 cnmpt2nd 14963 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |