ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fores Unicode version

Theorem fores 5419
Description: Restriction of a function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )

Proof of Theorem fores
StepHypRef Expression
1 funres 5229 . . 3  |-  ( Fun 
F  ->  Fun  ( F  |`  A ) )
21anim1i 338 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( Fun  ( F  |`  A )  /\  A  C_ 
dom  F ) )
3 df-fn 5191 . . 3  |-  ( ( F  |`  A )  Fn  A  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
4 df-ima 4617 . . . . 5  |-  ( F
" A )  =  ran  ( F  |`  A )
54eqcomi 2169 . . . 4  |-  ran  ( F  |`  A )  =  ( F " A
)
6 df-fo 5194 . . . 4  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  =  ( F " A
) ) )
75, 6mpbiran2 931 . . 3  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( F  |`  A )  Fn  A
)
8 ssdmres 4906 . . . 4  |-  ( A 
C_  dom  F  <->  dom  ( F  |`  A )  =  A )
98anbi2i 453 . . 3  |-  ( ( Fun  ( F  |`  A )  /\  A  C_ 
dom  F )  <->  ( Fun  ( F  |`  A )  /\  dom  ( F  |`  A )  =  A ) )
103, 7, 93bitr4i 211 . 2  |-  ( ( F  |`  A ) : A -onto-> ( F " A )  <->  ( Fun  ( F  |`  A )  /\  A  C_  dom  F ) )
112, 10sylibr 133 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116   dom cdm 4604   ran crn 4605    |` cres 4606   "cima 4607   Fun wfun 5182    Fn wfn 5183   -onto->wfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-fo 5194
This theorem is referenced by:  resdif  5454  ctinf  12363  qnnen  12364
  Copyright terms: Public domain W3C validator