ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq Unicode version

Theorem breq 4032
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2257 . 2  |-  ( R  =  S  ->  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
2 df-br 4031 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
3 df-br 4031 . 2  |-  ( A S B  <->  <. A ,  B >.  e.  S )
41, 2, 33bitr4g 223 1  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-br 4031
This theorem is referenced by:  breqi  4036  breqd  4041  poeq1  4331  soeq1  4347  frforeq1  4375  weeq1  4388  fveq1  5554  foeqcnvco  5834  f1eqcocnv  5835  isoeq2  5846  isoeq3  5847  ofreq  6136  supeq3  7051  tapeq1  7314  shftfvalg  10965  shftfval  10968  pw1nct  15563
  Copyright terms: Public domain W3C validator