Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . 2 | |
2 | df-br 3983 | . 2 | |
3 | df-br 3983 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 df-br 3983 |
This theorem is referenced by: breqi 3988 breqd 3993 poeq1 4277 soeq1 4293 frforeq1 4321 weeq1 4334 fveq1 5485 foeqcnvco 5758 f1eqcocnv 5759 isoeq2 5770 isoeq3 5771 ofreq 6053 supeq3 6955 shftfvalg 10760 shftfval 10763 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |