Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2221 | . 2 | |
2 | df-br 3966 | . 2 | |
3 | df-br 3966 | . 2 | |
4 | 1, 2, 3 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 cop 3563 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-clel 2153 df-br 3966 |
This theorem is referenced by: breqi 3971 breqd 3976 poeq1 4259 soeq1 4275 frforeq1 4303 weeq1 4316 fveq1 5467 foeqcnvco 5740 f1eqcocnv 5741 isoeq2 5752 isoeq3 5753 ofreq 6035 supeq3 6934 shftfvalg 10718 shftfval 10721 pw1nct 13586 |
Copyright terms: Public domain | W3C validator |