![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2151 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-br 3846 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-br 3846 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 df-br 3846 |
This theorem is referenced by: breqi 3851 breqd 3856 poeq1 4126 soeq1 4142 frforeq1 4170 weeq1 4183 fveq1 5304 foeqcnvco 5569 f1eqcocnv 5570 isoeq2 5581 isoeq3 5582 ofreq 5859 supeq3 6683 shftfvalg 10248 shftfval 10251 |
Copyright terms: Public domain | W3C validator |