ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq Unicode version

Theorem breq 3984
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2230 . 2  |-  ( R  =  S  ->  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
2 df-br 3983 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
3 df-br 3983 . 2  |-  ( A S B  <->  <. A ,  B >.  e.  S )
41, 2, 33bitr4g 222 1  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-br 3983
This theorem is referenced by:  breqi  3988  breqd  3993  poeq1  4277  soeq1  4293  frforeq1  4321  weeq1  4334  fveq1  5485  foeqcnvco  5758  f1eqcocnv  5759  isoeq2  5770  isoeq3  5771  ofreq  6053  supeq3  6955  shftfvalg  10760  shftfval  10763  pw1nct  13883
  Copyright terms: Public domain W3C validator