ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq Unicode version

Theorem breq 3991
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2234 . 2  |-  ( R  =  S  ->  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
2 df-br 3990 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
3 df-br 3990 . 2  |-  ( A S B  <->  <. A ,  B >.  e.  S )
41, 2, 33bitr4g 222 1  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-br 3990
This theorem is referenced by:  breqi  3995  breqd  4000  poeq1  4284  soeq1  4300  frforeq1  4328  weeq1  4341  fveq1  5495  foeqcnvco  5769  f1eqcocnv  5770  isoeq2  5781  isoeq3  5782  ofreq  6064  supeq3  6967  shftfvalg  10782  shftfval  10785  pw1nct  14036
  Copyright terms: Public domain W3C validator