ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq Unicode version

Theorem breq 4007
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
Assertion
Ref Expression
breq  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )

Proof of Theorem breq
StepHypRef Expression
1 eleq2 2241 . 2  |-  ( R  =  S  ->  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  S ) )
2 df-br 4006 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
3 df-br 4006 . 2  |-  ( A S B  <->  <. A ,  B >.  e.  S )
41, 2, 33bitr4g 223 1  |-  ( R  =  S  ->  ( A R B  <->  A S B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173  df-br 4006
This theorem is referenced by:  breqi  4011  breqd  4016  poeq1  4301  soeq1  4317  frforeq1  4345  weeq1  4358  fveq1  5516  foeqcnvco  5793  f1eqcocnv  5794  isoeq2  5805  isoeq3  5806  ofreq  6088  supeq3  6991  tapeq1  7253  shftfvalg  10829  shftfval  10832  pw1nct  14837
  Copyright terms: Public domain W3C validator