| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq | Unicode version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. 2
| |
| 2 | df-br 4035 |
. 2
| |
| 3 | df-br 4035 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-br 4035 |
| This theorem is referenced by: breqi 4040 breqd 4045 poeq1 4335 soeq1 4351 frforeq1 4379 weeq1 4392 fveq1 5560 foeqcnvco 5840 f1eqcocnv 5841 isoeq2 5852 isoeq3 5853 ofreq 6143 supeq3 7065 tapeq1 7335 shftfvalg 11000 shftfval 11003 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |