ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4373
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4323 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 132 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2308 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2763 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2267 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3267 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4167 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2549 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4364 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 146 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {cab 2179   A.wral 2472   {crab 2476   _Vcvv 2760   class class class wbr 4029    _E cep 4318   Se wse 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-eprel 4320  df-se 4364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator