ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4407
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4357 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 132 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2322 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2779 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2281 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3289 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4198 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2563 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4398 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 146 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   {cab 2193   A.wral 2486   {crab 2490   _Vcvv 2776   class class class wbr 4059    _E cep 4352   Se wse 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-se 4398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator