ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4433
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4383 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 132 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2344 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2802 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2303 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3312 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4222 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2585 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4424 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 146 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   {cab 2215   A.wral 2508   {crab 2512   _Vcvv 2799   class class class wbr 4083    _E cep 4378   Se wse 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-eprel 4380  df-se 4424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator