ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4222
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4172 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 131 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2227 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2658 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2186 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3148 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4024 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2459 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4213 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 145 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 1461   {cab 2099   A.wral 2388   {crab 2392   _Vcvv 2655   class class class wbr 3893    _E cep 4167   Se wse 4209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-eprel 4169  df-se 4213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator