ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4388
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4338 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 132 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2319 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2774 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2278 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3280 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4181 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2560 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4379 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 146 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2175   {cab 2190   A.wral 2483   {crab 2487   _Vcvv 2771   class class class wbr 4043    _E cep 4333   Se wse 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-eprel 4335  df-se 4379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator