ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epse Unicode version

Theorem epse 4327
Description: The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse  |-  _E Se  A

Proof of Theorem epse
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 4277 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
21bicomi 131 . . . . . 6  |-  ( y  e.  x  <->  y  _E  x )
32abbi2i 2285 . . . . 5  |-  x  =  { y  |  y  _E  x }
4 vex 2733 . . . . 5  |-  x  e. 
_V
53, 4eqeltrri 2244 . . . 4  |-  { y  |  y  _E  x }  e.  _V
6 rabssab 3235 . . . 4  |-  { y  e.  A  |  y  _E  x }  C_  { y  |  y  _E  x }
75, 6ssexi 4127 . . 3  |-  { y  e.  A  |  y  _E  x }  e.  _V
87rgenw 2525 . 2  |-  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V
9 df-se 4318 . 2  |-  (  _E Se 
A  <->  A. x  e.  A  { y  e.  A  |  y  _E  x }  e.  _V )
108, 9mpbir 145 1  |-  _E Se  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   {cab 2156   A.wral 2448   {crab 2452   _Vcvv 2730   class class class wbr 3989    _E cep 4272   Se wse 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-eprel 4274  df-se 4318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator