ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu Unicode version

Theorem hbeu 2075
Description: Bound-variable hypothesis builder for uniqueness. Note that 
x and  y needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
Hypothesis
Ref Expression
hbeu.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbeu  |-  ( E! y ph  ->  A. x E! y ph )

Proof of Theorem hbeu
StepHypRef Expression
1 hbeu.1 . . . 4  |-  ( ph  ->  A. x ph )
21nfi 1485 . . 3  |-  F/ x ph
32nfeu 2073 . 2  |-  F/ x E! y ph
43nfri 1542 1  |-  ( E! y ph  ->  A. x E! y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057
This theorem is referenced by:  hbmo  2093  2eu7  2148
  Copyright terms: Public domain W3C validator