Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb4t | Unicode version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
hbsb4t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1533 | . . 3 | |
2 | 1 | hbsb4 2005 | . 2 |
3 | spsbim 1836 | . . . . 5 | |
4 | 3 | sps 1530 | . . . 4 |
5 | ax-4 1503 | . . . . . . 7 | |
6 | 5 | sbimi 1757 | . . . . . 6 |
7 | 6 | alimi 1448 | . . . . 5 |
8 | 7 | a1i 9 | . . . 4 |
9 | 4, 8 | imim12d 74 | . . 3 |
10 | 9 | a7s 1447 | . 2 |
11 | 2, 10 | syl5 32 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: nfsb4t 2007 |
Copyright terms: Public domain | W3C validator |