| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb4t | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2040). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| hbsb4t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1563 |
. . 3
| |
| 2 | 1 | hbsb4 2040 |
. 2
|
| 3 | spsbim 1866 |
. . . . 5
| |
| 4 | 3 | sps 1560 |
. . . 4
|
| 5 | ax-4 1533 |
. . . . . . 7
| |
| 6 | 5 | sbimi 1787 |
. . . . . 6
|
| 7 | 6 | alimi 1478 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 4, 8 | imim12d 74 |
. . 3
|
| 10 | 9 | a7s 1477 |
. 2
|
| 11 | 2, 10 | syl5 32 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: nfsb4t 2042 |
| Copyright terms: Public domain | W3C validator |